CAD-based shape optimisation with CFD using a discrete adjoint

被引:39
|
作者
Xu, Shenren [1 ]
Jahn, Wolfram [2 ]
Mueller, Jens-Dominik [1 ]
机构
[1] Univ London, Sch Mat Sci & Engn, London, England
[2] BDSP Partnership, London, England
关键词
shape optimisation; discrete adjoint; CAD; NURBS; FORMULATION; DESIGN; FLOW;
D O I
10.1002/fld.3844
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One of the major challenges of shape optimisation in practical industrial cases is to generically parametrise the wide range of complex shapes. A novel approach is presented, which takes CAD descriptions as input and produces the optimal shape in CAD form using the control points of the Non-Uniform Rational B-Splines (NURBS) boundary representation as design variables. An implementation of the NURBS equations in source allows to include the CAD-based shape deformation inside the design loop and evaluate its sensitivities efficiently and robustly. In order to maintain or establish the required level of geometric continuity across patch interfaces, geometric constraints are imposed on the control point displacements. The paper discusses the discrete adjoint flow solver used and the computation of the complete sensitivities of the design loop by differentiating all components using automatic differentiation tools. The resulting rich but smooth deformation space is demonstrated on the optimisation of a vehicle climate duct. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 50 条
  • [1] CAD-based shape optimisation using adjoint sensitivities
    Yu, Guangxu
    Mueller, Jens-Dominik
    Jones, Dominic
    Christakopoulos, Faidon
    COMPUTERS & FLUIDS, 2011, 46 (01) : 512 - 516
  • [2] Aerodynamic Shape Optimisation Using Parametric CAD and Discrete Adjoint
    Agarwal, Dheeraj
    Marques, Simao
    Robinson, Trevor T. T.
    AEROSPACE, 2022, 9 (12)
  • [3] CAD-BASED ADJOINT SHAPE OPTIMISATION OF A ONE-STAGE TURBINE WITH GEOMETRIC CONSTRAINTS
    Xu, Shenren
    Radford, David
    Meyer, Marcus
    Mueller, Jens-Dominik
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 2C, 2015,
  • [4] Adjoint algorithm for CAD-based shape optimization using a Cartesian method
    Nemec, Marian
    Aftosmis, Michael J.
    17th AIAA Computational Fluid Dynamics Conference, 2005,
  • [5] CAD-Based Parameterization for Adjoint Optimization
    Damigos, Marios
    De Villiers, Eugene
    OPENFOAM(R), 2019, : 23 - 38
  • [6] Using parametric effectiveness for efficient CAD-based adjoint optimization
    Agarwal D.
    Christos K.
    Robinson T.T.
    Armstrong C.G.
    Computer-Aided Design and Applications, 2019, 16 (04) : 703 - 719
  • [7] Enhancing CAD-based shape optimisation by automatically updating the CAD model's parameterisation
    Agarwal, Dheeraj
    Robinson, Trevor T.
    Armstrong, Cecil G.
    Kapellos, Christos
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 59 (05) : 1639 - 1654
  • [8] Enhancing CAD-based shape optimisation by automatically updating the CAD model’s parameterisation
    Dheeraj Agarwal
    Trevor T. Robinson
    Cecil G. Armstrong
    Christos Kapellos
    Structural and Multidisciplinary Optimization, 2019, 59 : 1639 - 1654
  • [9] CAD-based Adjoint Optimization Using Other Components in a CAD Model Assembly as Constraints
    Agarwal D.
    Robinson T.T.
    Armstrong C.G.
    Computer-Aided Design and Applications, 2023, 20 (04): : 749 - 762
  • [10] Geometric continuity constraints of automatically derived parametrisations in CAD-based shape optimisation
    Mueller, Jens-Dominik
    Zhang, Xingchen
    Akbarzadeh, Siamak
    Wang, Yang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (6-7) : 272 - 288