Probabilistic modeling for symbolic data

被引:3
|
作者
Bock, Hans-Hermann [1 ]
机构
[1] Univ Aachen, Rhein Westfal TH Aachen, Inst Stat, D-52056 Aachen, Germany
关键词
symbolic data; interval data; probability models; minimum volume sets; average intervals; clustering; regression;
D O I
10.1007/978-3-7908-2084-3_5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Symbolic data refer to variables whose 'values' might be, e.g., intervals, sets of categories, or even frequency distributions. Symbolic data analysis provides exploratory methods for revealing the structure of such data and proceeds typically by heuristical, even if suggestive methods that generalize criteria and algorithms from classical multivariate statistics. In contrast, this paper proposes to base the analysis of symbolic data on probability models as well and to derive statistical tools by standard methods (such as maximum likelihood). This approach is exemplified for the case of multivariate interval data where we consider minimum volume hypercubes, average intervals, clustering and regression models, also with reference to previous work.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [1] Symbolic clustering of constrained probabilistic data
    Brito, P
    de Carvalho, FAT
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 12 - 21
  • [2] Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring
    Zuidberg Dos Martires, Pedro
    Kumar, Nitesh
    Persson, Andreas
    Loutfi, Amy
    De Raedt, Luc
    FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [3] Automated Probabilistic Modeling for Relational Data
    Singh, Sameer
    Graepel, Thore
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1497 - 1500
  • [4] Modeling and Querying Probabilistic XML Data
    Kimelfeld, Benny
    Sagiv, Yehoshua
    SIGMOD RECORD, 2008, 37 (04) : 69 - 77
  • [5] Modeling and Computing Probabilistic Skyline on Incomplete Data
    Zhang, Kaiqi
    Gao, Hong
    Han, Xixian
    Cai, Zhipeng
    Li, Jianzhong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (07) : 1405 - 1418
  • [6] Rule discovery and probabilistic modeling for onomastic data
    Leino, A
    Mannila, H
    Pitkänen, RL
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2003, PROCEEDINGS, 2003, 2838 : 291 - 302
  • [7] Improving the probabilistic modeling of market basket data
    Buchta, Christian
    ADVANCES IN DATA ANALYSIS, 2007, : 417 - 424
  • [8] Protecting Genomic Data Privacy with Probabilistic Modeling
    Simmons, Sean
    Berger, Bonnie
    Sahinalp, Cenk
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019, 2019, : 403 - 414
  • [9] Augur: Data-Parallel Probabilistic Modeling
    Tristan, Jean-Baptiste
    Huang, Daniel
    Tassarotti, Joseph
    Pocock, Adam L.
    Green, Stephen J. S.
    Steele, Guy L., Jr.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [10] Probabilistic Topic Modeling for Genomic Data Interpretation
    Chen, Xin
    Hu, Xiaohua
    Shen, Xiajiong
    Rosen, Gail
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 149 - 152