Knot homology via derived categories of coherent sheaves II, slm case

被引:0
|
作者
Cautis, Sabin [1 ]
Kamnitzer, Joel [2 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77251 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
关键词
D O I
10.1007/s00222-008-0138-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using derived categories of equivariant coherent sheaves we construct a knot homology theory which categorifies the quantum sl(m) knot polynomial. Our knot homology naturally satisfies the categorified MOY relations and is conjecturally isomorphic to Khovanov-Rozansky homology. Our construction is motivated by the geometric Satake correspondence and is related to Manolescu's by homological mirror symmetry.
引用
收藏
页码:165 / 232
页数:68
相关论文
共 24 条