Group invariant solution for a fluid-driven permeable fracture with Darcy flow in porous rock medium

被引:3
|
作者
Nchabeleng, M. W.
Fareo, A. G. [1 ]
机构
[1] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Lie point symmetry; Darcy flow; Nonlinear diffusion; Lubrication theory; PKN hydraulic fracture; TIP REGION; MAGMA; PROPAGATION;
D O I
10.1016/j.ijnonlinmec.2017.11.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Group invariant and numerical solutions for the evolution of a two-dimensional fracture with non-zero initial length in permeable rock and driven by a laminar incompressible Newtonian fluid are obtained. The fluid leak-off into the rock mass is modelled using Darcy law. With the aid of lubrication theory and the PKN approximation, a system of nonlinear partial differential equations for the fracture half-width and the extent of leak-off is derived. Since the fluid rock interface is permeable the nonlinear diffusion equation contains a leak-off velocity sink term. Using the Lie point symmetries the problem is reduced to a boundary value problem for a system of second order ordinary differential equations. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [1] Group invariant solution for a fluid-driven fracture with a non-Darcy flow in porous medium
    Nchabeleng, M. W.
    Fareo, A. G.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 115 : 41 - 48
  • [2] A group invariant solution for a pre-existing fluid-driven fracture in permeable rock
    Fareo, A. G.
    Mason, D. P.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 767 - 779
  • [3] Group invariant solution for a pre-existing fluid-driven fracture in impermeable rock
    A. D. Fitt
    D. P. Mason
    E. A. Moss
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 1049 - 1067
  • [4] Group invariant solution for a pre-existing fluid-driven fracture in impermeable rock
    Fitt, A. D.
    Mason, D. P.
    Moss, E. A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 1049 - 1067
  • [5] Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock
    Fareo, A. G.
    Mason, D. P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [6] Plane-Strain Propagation of a Fluid-Driven Crack in a Permeable Rock with Fracture Toughness
    Hu, J.
    Garagash, D. I.
    JOURNAL OF ENGINEERING MECHANICS, 2010, 136 (09) : 1152 - 1166
  • [7] Hydrogel as a Medium for Fluid-Driven Fracture Study
    N.J. O’Keeffe
    P.F. Linden
    Experimental Mechanics, 2017, 57 : 1483 - 1493
  • [8] Hydrogel as a Medium for Fluid-Driven Fracture Study
    O'Keeffe, N. J.
    Linden, P. F.
    EXPERIMENTAL MECHANICS, 2017, 57 (09) : 1483 - 1493
  • [9] A Darcy-Cahn-Hilliard model of multiphase fluid-driven fracture
    Guevel, Alexandre
    Meng, Yue
    Peco, Christian
    Juanes, Ruben
    Dolbow, John E.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 181
  • [10] The tip region of a fluid-driven fracture in an elastic medium
    Garagash, D
    Detournay, E
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (01): : 183 - 192