Quantum statistics control with a plasmonic nanocavity: Multimode-enhanced interferences

被引:13
|
作者
Zhao, Dongxing [1 ]
Gu, Ying [1 ,2 ]
Chen, Hongyi [1 ]
Ren, Juanjuan [1 ]
Zhang, Tiancai [3 ]
Gong, Qihuang [1 ,2 ]
机构
[1] Peking Univ, Dept Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[3] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
基金
中国国家自然科学基金;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; GENERATION; QUTIP;
D O I
10.1103/PhysRevA.92.033836
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using a scattered field interference mechanism, we theoretically demonstrate the quantum statistics control with a hybrid system comprised of a quantum emitter and a plasmonic multimode nanocavity. Enhanced through multimode interactions, destructive interference between scattered fields from the emitter and nanocavity is able to change the photon statistics from bunching to antibunching. This transition cannot be explained by treating the plasmonic nanocavity in the dipole approximation. In some specific regions, an effective single-mode model, which is equivalent to the multimode model, is derived by simply shifting the transition frequency and modifying decay rates of the nearby quantum emitter. Superior to the closed optical microcavity, this hybrid system can be used to control the photon statistics without the need for strong coupling, and may find applications in nanoscale refractive index sensing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Disordered plasmonic nanocavity enhanced quantum dot emission
    Kosger, Ali Cahit
    Ghobadi, Amir
    Omam, Zahra Rahimian
    Soydan, Mahmut Can
    Ghobadi, Turkan Gamze Ulusoy
    Ozbay, Ekmel
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (47)
  • [2] Plasmonic Nanocavity Array for Enhanced Upconversion Luminescence
    Jung, Kinam
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2019, 40 (02) : 91 - 92
  • [3] Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity
    Kokin, Egor
    An, Hyun Ji
    Koo, Donghoon
    Han, Seungyeon
    Whang, Keumrai
    Kang, Taewook
    Choi, Inhee
    Lee, Luke P.
    NANO LETTERS, 2022, 22 (24) : 9861 - 9868
  • [4] Plasmonic Nanocavity for Interaction with Colloidal Quantum Dots
    Gong, Yiyang
    Vuckovic, Jelena
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3627 - 3628
  • [5] Plasmonic Quantum Dot Nanocavity Laser: Hybrid Modes
    Jamal N. Jabir
    S. M. M. Ameen
    Amin Habbeb Al-Khursan
    Plasmonics, 2020, 15 : 1451 - 1458
  • [6] Plasmonic Quantum Dot Nanocavity Laser: Hybrid Modes
    Jabir, Jamal N.
    Ameen, S. M. M.
    Al-Khursan, Amin Habbeb
    PLASMONICS, 2020, 15 (05) : 1451 - 1458
  • [7] QUANTUM STATISTICS OF MULTIMODE PARAMETRIC AMPLIFICATION
    LANE, A
    TOMBESI, P
    CARMICHAEL, HJ
    WALLS, DF
    OPTICS COMMUNICATIONS, 1983, 48 (02) : 155 - 160
  • [8] Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells
    Lindquist, Nathan C.
    Luhman, Wade A.
    Oh, Sang-Hyun
    Holmes, Russell J.
    APPLIED PHYSICS LETTERS, 2008, 93 (12)
  • [9] Population Swap of a Pair of Quantum Dots Coupling to a Plasmonic Nanocavity
    Li Jian-Bo
    Cheng Mu-Tian
    Yang Zhong-Jian
    Hao Zhong-Hua
    CHINESE PHYSICS LETTERS, 2009, 26 (11)
  • [10] Enhanced optical properties in a polarization-matched semiconductor plasmonic nanocavity
    Hou, Y.
    MATERIALS LETTERS, 2019, 236 : 574 - 578