On asymptotic structure, the Szlenk index and UKK properties in Banach spaces

被引:60
|
作者
Knaust, H [1 ]
Odell, E
Schlumprecht, T
机构
[1] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
asymptotic structure; Szlenk index; uniform Kadec-Klee property;
D O I
10.1023/A:1009786603119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be a separable Banach space and let X = B* be separable. We prove that if B has finite Szlenk index (for all epsilon > 0) then B can be renormed to have the weak* uniform Kadec-Klee property. Thus if epsilon > 0 there exists delta (epsilon) > 0 so that if (x(n)) is a sequence in the ball of X converging omega* to x so that lim inf(n -->infinity) parallel to x(n)-x parallel to greater than or equal to epsilon then parallel to x parallel to less than or equal to 1-delta (epsilon). In addition we show that the norm can be chosen so that delta (epsilon) greater than or equal to c epsilon(p) for some p < infinity and c > 0.
引用
收藏
页码:173 / 199
页数:27
相关论文
共 50 条