Morphological scale-spaces

被引:1
|
作者
Jackway, PT [1 ]
机构
[1] Univ Queensland, Sch Elect Engn & Comp Sci, Cooperat Res Ctr Sensor Signal & Informat Proc, Brisbane, Qld 4072, Australia
关键词
D O I
10.1016/S1076-5670(01)80087-2
中图分类号
O59 [应用物理学];
学科分类号
摘要
Two scaled morphological operations, the multiscale dilation-erosion and the multiscale closing-opening, have been introduced for the scale-space smoothing of signals. The multiscale operations are translation invariant, nonlinear, increasing, and dependent on a real-scale parameter, which can be negative. The smoothed signals across all scales can be considered as a function on the scale-space. The scale-space image exists for negative and positive scale and, thus, the information in the signal is more expanded than in the linear (Gaussian) scale-space image, which only exists for non-negative scale. The use of flat structuring functions on gray-scale images leads to flat regions in the output signal around the local extrema, and the local extrema are no longer exactly localized in position. Modem scale-space theory concentrate on powerful mathematical results describing the axiomatic bases and the differential structure and invariants of the various scale-spaces.
引用
收藏
页码:123 / 189
页数:67
相关论文
共 50 条
  • [1] Morphological scale-spaces
    Jackway, PT
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 99, 1998, 99 : 1 - 64
  • [2] Morphological Semigroups and Scale-Spaces on Ultrametric Spaces
    Angulo, Jesus
    Velasco-Forero, Santiago
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING (ISMM 2017), 2017, 10225 : 28 - 39
  • [3] Scale Equivariant Neural Networks with Morphological Scale-Spaces
    Sangalli, Mateus
    Blusseau, Samy
    Velasco-Forero, Santiago
    Angulo, Jesus
    DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2021, 2021, 12708 : 483 - 495
  • [4] Algebraic framework for linear and morphological scale-spaces
    Heijmans, HJAM
    van den Boomgaard, R
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2002, 13 (1-2) : 269 - 301
  • [5] Morphological scale-spaces, scale-invariance, and lie groups
    Heijmans, HJAM
    MATHEMATICAL MORPHOLOGY, PROCEEDINGS, 2002, : 253 - 263
  • [6] Morphological Counterparts of Linear Shift-Invariant Scale-Spaces
    Martin Schmidt
    Joachim Weickert
    Journal of Mathematical Imaging and Vision, 2016, 56 : 352 - 366
  • [7] Shape recognition using orientational and morphological scale-spaces of curvatures
    Akagunduz, Erdem
    IET COMPUTER VISION, 2015, 9 (05) : 750 - 757
  • [8] Sparsification Scale-Spaces
    Cardenas, Marcelo
    Peter, Pascal
    Weickert, Joachim
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2019, 2019, 11603 : 303 - 314
  • [9] Morphological Counterparts of Linear Shift-Invariant Scale-Spaces
    Schmidt, Martin
    Weickert, Joachim
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2016, 56 (02) : 352 - 366
  • [10] Relativistic scale-spaces
    Burgeth, B
    Didas, S
    Weickert, J
    SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 1 - 12