Meshless local Petrov-Galerkin method for 2D fractional Fokker-Planck equation involved with the ABC fractional derivative

被引:5
|
作者
Hosseininia, M. [1 ]
Heydari, M. H. [1 ]
Razzaghi, M. [2 ]
机构
[1] Shiraz Univ Technol, Dept Math, Shiraz, Iran
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
Fractional Fokker-Planck equation; Atangana-Baleanu-Caputo fractional derivative; Meshless local Petrov-Galerkin method; Moving Kriging interpolation; (3 − β )-order approximation; NUMERICAL-SOLUTION; DIFFUSION; MODEL;
D O I
10.1016/j.camwa.2022.08.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines a time fractional version of the 2D Fokker-Planck equation involved with the Atangana-Baleanu-Caputo fractional derivative, under the Dirichlet boundary conditions. A fully discretization approach based on the meshless local Petrov-Galerkin method and (3 - fl) -order approximation is proposed for this equation. More precisely, we apply the meshless local Petrov-Galerkin method based on the Moving Kriging interpolation to discretize the space domain, and utilize the (3 - fl) -order approximation together with the theta- weighted finite difference method to discretize the temporal domain. By implementing this method, we get a solution for the problem by solving a system of algebraic equations. The validity of the method is investigated by solving four examples.
引用
收藏
页码:176 / 192
页数:17
相关论文
共 50 条
  • [1] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Fokker-Planck Equation with Nonsmooth Solution
    Zeng, Wei
    Xiao, Aiguo
    Bu, Weiping
    Wang, Junjie
    Li, Shucun
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (01) : 89 - 105
  • [2] Local fractional Fokker-Planck equation
    Phys Rev Lett, 2 (214):
  • [3] Local fractional Fokker-Planck equation
    Kolwankar, KM
    Gangal, AD
    PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 214 - 217
  • [4] STABLE AND EFFICIENT PETROV-GALERKIN METHODS FOR A KINETIC FOKKER-PLANCK EQUATION
    Brunken, Julia
    Smetana, Kathrin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) : 157 - 179
  • [5] Enhanced fifth-kind Chebyshev polynomial Petrov-Galerkin algorithm for time-fractional Fokker-Planck equation
    Magdy, E.
    Atta, A. G.
    Moatimid, G. M.
    Abd-Elhameed, W. M.
    Youssri, Y. H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (12):
  • [6] A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation
    Zheng, Yunying
    Li, Changpin
    Zhao, Zhengang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [7] Analysis of the MLS variants in the meshless local Petrov-Galerkin method for a solution to the 2D Laplace equation
    Singh, Rituraj
    Trobec, Roman
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 115 - 131
  • [8] Numerical approximation of the fractional HIV model using the meshless local Petrov-Galerkin method
    Phramrung, Kunwithree
    Luadsong, Anirut
    Aschariyaphotha, Nitima
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [9] Meshless Local Petrov-Galerkin and RBFs Collocation Methods for Solving 2D Fractional Klein-Kramers Dynamics Equation on Irregular Domains
    Dehghan, M.
    Abbaszadeh, M.
    Mohebbi, A.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 107 (06): : 481 - 516
  • [10] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863