Exploiting Causality in Constructing Bayesian Network Graphs from Legal Arguments

被引:5
|
作者
Wieten, Remi [1 ]
Bex, Floris [1 ,2 ]
Prakken, Henry [1 ,3 ]
Renooij, Silja [1 ]
机构
[1] Univ Utrecht, Informat & Comp Sci, Utrecht, Netherlands
[2] Tilburg Univ, Inst Law Technol & Soc, Tilburg, Netherlands
[3] Univ Groningen, Fac Law, Groningen, Netherlands
关键词
Bayesian networks; legal reasoning; argumentation; causality;
D O I
10.3233/978-1-61499-935-5-151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a structured approach for transforming legal arguments to a Bayesian network (BN) graph. Our approach automatically constructs a fully specified BN graph by exploiting causality information present in legal arguments. Moreover, we demonstrate that causality information in addition provides for constraining some of the probabilities involved. We show that for undercutting attacks it is necessary to distinguish between causal and evidential attacked inferences, which extends on a previously proposed solution to modelling undercutting attacks in BNs. We illustrate our approach by applying it to part of an actual legal case, namely the Sacco and Vanzetti legal case.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [1] Constructing Bayesian Network Graphs from Labeled Arguments
    Wieten, Remi
    Bex, Floris
    Prakken, Henry
    Renooij, Silja
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019, 2019, 11726 : 99 - 110
  • [2] From Arguments to Constraints on a Bayesian Network
    Bex, Floris
    Renooij, Silja
    COMPUTATIONAL MODELS OF ARGUMENT, 2016, 287 : 95 - 106
  • [3] Extracting Legal Arguments from Forensic Bayesian Networks
    Timmer, Sjoerd T.
    Meyer, John-Jules Ch
    Prakken, Henry
    Renooij, Silja
    Verheij, Bart
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 271 : 71 - 80
  • [4] A Guide for Constructing Bayesian Network Graphs of Cancer Treatment Decisions
    Cypko, Mario A.
    Stoehr, Matthaeus
    Oeltze-Jafra, Steffen
    Dietz, Andreas
    Lemke, Heinz U.
    MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 : 1355 - 1355
  • [5] Constructing argument graphs with deductive arguments: a tutorial
    Besnard, Philippe
    Hunter, Anthony
    ARGUMENT & COMPUTATION, 2014, 5 (01) : 5 - 30
  • [6] A Bayesian Approach to Constructing Probabilistic Models from Knowledge Graphs
    Freedman, Hayden
    Metzger, Jacob
    Abolhassani, Neda
    Tudor, Ana
    Tomlinson, Bill
    Paul, Sanjoy
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2024, 18 (01) : 25 - 49
  • [7] Constructing Legal Arguments with Rules in the Legal Knowledge Interchange Format (LKIF)
    Gordon, Thomas F.
    COMPUTABLE MODELS OF THE LAW: LANGUAGES, DIALOGUES, GAMES, ONTOLOGIES, 2008, 4884 : 162 - 184
  • [8] Exploiting Causality for Selective Belief Filtering in Dynamic Bayesian Networks
    Albrecht, Stefano V.
    Ramamoorthy, Subramanian
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2016, 55 : 1135 - 1178
  • [9] Constructing Semantic Network Based on Bayesian Network
    Wang, Fangshi
    Xu, De
    Liu, Jingen
    2009 1ST IEEE SYMPOSIUM ON WEB SOCIETY, PROCEEDINGS, 2009, : 51 - +
  • [10] Exploiting Ontology to Build Bayesian Network
    Mabrouk, Ahmed
    Ben Abbes, Sarra
    Temal, Lynda
    Isaj, Ledia
    Calvez, Philippe
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 578 - 585