Hyperdislocations in van der Waals Layered Materials

被引:9
|
作者
Ly, Thuc Hue [1 ,2 ]
Zhao, Jiong [1 ,2 ]
Keum, Dong Hoon [1 ,2 ]
Deng, Qingming [3 ]
Yu, Zhiyang [4 ,5 ]
Lee, Young Hee [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Inst Basic Sci, IBS Ctr Integrated Nanostruct Phys CINAP, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea
[3] Huaiyin Normal Univ, Sch Phys & Elect Elect Engn, Huaian 223001, Peoples R China
[4] Xiamen Univ Technol, Sch Mat Sci & Engn, Xiamen 361024, Peoples R China
[5] Tsinghua Univ, Lab Adv Mat MOE, Beijing Natl Ctr Electron Microscopy, Sch Mat Sci & Engn,State Key Lab New Ceram & Fine, Beijing 100084, Peoples R China
关键词
Hyperdislocation; vdW layered materials; transmission electron microscopy; TEM; superlubricity; DISLOCATION NETWORKS; TWIST BOUNDARIES; SUPERLUBRICITY; TRANSPORT; CRYSTALS;
D O I
10.1021/acs.nanolett.6b04002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dislocations are one-dimensional line defects in three-dimensional crystals or periodic structures. It is common that the dislocation networks made of interactive dislocations be generated during plastic deformation. In van der Waals layered materials, the highly anisotropic nature facilitates the formation of such dislocation networks, which is critical for the friction or exfoliation behavior for these materials. By transmission electron microscopy analysis, we found the topological defects in such dislocation networks can be perfectly rationalized in the framework of traditional dislocation theory, which we applied the name "hyper dislocations". Due to the strong pinning effect of hyper dislocations, the state of exfoliation can be easily triggered by 1 twisting between two layers, which also explains the origin of disregistry and frictionlessness for all of the superlubricants that are widely used for friction reduction and wear protection.
引用
收藏
页码:7807 / 7813
页数:7
相关论文
共 50 条
  • [1] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    ACS NANO, 2022, 16 (05) : 7144 - 7167
  • [2] Ferroelectric order in van der Waals layered materials
    Dawei Zhang
    Peggy Schoenherr
    Pankaj Sharma
    Jan Seidel
    Nature Reviews Materials, 2023, 8 : 25 - 40
  • [3] Ferroelectric order in van der Waals layered materials
    Zhang, Dawei
    Schoenherr, Peggy
    Sharma, Pankaj
    Seidel, Jan
    NATURE REVIEWS MATERIALS, 2023, 8 (01) : 25 - 40
  • [4] van der Waals Layered Materials: Opportunities and Challenges
    Duong, Dinh Loc
    Yun, Seok Joon
    Lee, Young Hee
    ACS NANO, 2017, 11 (12) : 11803 - 11830
  • [5] Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials
    Dong-Hwan Choi
    Kyung-Ah Min
    Suklyun Hong
    Bum-Kyu Kim
    Myung-Ho Bae
    Ju-Jin Kim
    Scientific Reports, 11
  • [6] Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials
    Choi, Dong-Hwan
    Min, Kyung-Ah
    Hong, Suklyun
    Kim, Bum-Kyu
    Bae, Myung-Ho
    Kim, Ju-Jin
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Evaluation of van der Waals density functionals for layered materials
    Tawfik, Sherif Abdulkader
    Gould, Tim
    Stampfl, Catherine
    Ford, Michael J.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (03):
  • [8] Tunable mosaic structures in van der Waals layered materials
    Quan, Silong
    He, Linghui
    Ni, Yong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (39) : 25428 - 25436
  • [9] Theory of mechanical exfoliation of van der Waals bonded layered materials
    Sun, Haoye
    Sahin, Ozan
    Javey, Ali
    Ager, Joel W.
    Chrzan, D. C.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (06):
  • [10] A practical guide for crystal growth of van der Waals layered materials
    May, Andrew F.
    Yan, Jiaqiang
    McGuire, Michael A.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (05)