A novel method for lake level prediction: deep echo state network

被引:9
|
作者
Alizamir, Meysam [1 ]
Kisi, Ozgur [2 ]
Kim, Sungwon [3 ]
Heddam, Salim [4 ]
机构
[1] Islamic Azad Univ, Hamedan Branch, Dept Civil Engn, Hamadan, Hamadan, Iran
[2] Ilia State Univ, Fac Nat Sci & Engn, Tbilisi, Georgia
[3] Dongyang Univ, Dept Railrd Construct & Safety Engn, Yeongju 36040, South Korea
[4] Fac Sci, Dept Agron, Hydraul Div, Lab Res Biodivers Interact Ecosyst & Biotechnol, Univ 20 Aout 1955,Route el Hadaik, Skikda, BP, Algeria
关键词
Lake level prediction; Deep echo state network; Extreme learning machine; ANNs; Regression tree; EXTREME LEARNING-MACHINE; SUPPORT VECTOR MACHINE; GLOBAL SOLAR-RADIATION; WATER-LEVEL; FEEDFORWARD NETWORKS; MODE DECOMPOSITION; REGRESSION TREE; NEURAL-NETWORK; FLUCTUATIONS; CLASSIFICATION;
D O I
10.1007/s12517-020-05965-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurately prediction of lake level fluctuations is essential for water resources planning and management. In the present study, the potential of a novel method, deep echo state network (Deep ESN), is investigated for monthly lake level prediction and its results are compared with three data-driven methods, artificial neural networks (ANNs), extreme learning machine (ELM), and regression tree (Reg. Tree). The methods are validated using root mean square errors (RMSE), determination coefficient (R-2), and Nash-Sutcliffe efficiency (NSE) criteria. The investigated method (Deep ESN) outperforms the ELM, ANNs, and Reg. Tree by improving accuracies by 61-62-96%, 10-14-84%, and 8-23-80% in prediction 1 month, 2 months, and 3 months ahead lake level fluctuations in terms of RMSE criteria, respectively. Also, accuracy of ELM, ANNs, and Reg. Tree was significantly increased using Deep ESN model by 1.1-1.1-443%, 1.1-1.6-250%, and 1.6-6.5-184% in terms of NSE indicator for different lead-time horizons. Among the ELM, ANNs, and Reg. Tree, the third method provides the worst predictions while the first method performs superior to the second one in all tree time horizons.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A novel method for lake level prediction: deep echo state network
    Meysam Alizamir
    Ozgur Kisi
    Sungwon Kim
    Salim Heddam
    Arabian Journal of Geosciences, 2020, 13
  • [2] Destination prediction using deep echo state network
    Song, Zuohua
    Wu, Keyu
    Shao, Jie
    NEUROCOMPUTING, 2020, 406 : 343 - 353
  • [3] Multiscale Network Traffic Prediction Method Based on Deep Echo-State Network for Internet of Things
    Zhou, Jian
    Han, Taotao
    Xiao, Fu
    Gui, Guan
    Adebisi, Bamidele
    Gacanin, Haris
    Sari, Hikmet
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21862 - 21874
  • [4] Sequence prediction with different dimensions based on two novel deep echo state network models
    Sun, Jingyu
    Li, Lixiang
    Peng, Haipeng
    Chen, Guanhua
    Liu, Shengyu
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (11) : 2062 - 2076
  • [5] Prediction of tourist flow based on deep belief network and echo state network
    Cheng X.
    Zhao C.
    Revue d'Intelligence Artificielle, 2019, 33 (04) : 275 - 281
  • [6] Network Traffic Prediction Method Based on Improved Echo State Network
    Zhou, Jian
    Yang, Xinyan
    Sun, Lijuan
    Han, Chong
    Xiao, Fu
    IEEE ACCESS, 2018, 6 : 70625 - 70632
  • [7] An Effective Deep Neural Network Method for Prediction of Battery State at Cell and Module Level
    Nguyen-Thoi, T.
    Cui, Xujian
    Garg, Akhil
    Gao, Liang
    Truong, Tam T.
    ENERGY TECHNOLOGY, 2021, 9 (07)
  • [8] Network traffic prediction method based on echo state network with adaptive reservoir
    Zhou, Jian
    Wang, Haoming
    Xiao, Fu
    Yan, Xiaoyong
    Sun, Lijuan
    SOFTWARE-PRACTICE & EXPERIENCE, 2021, 51 (11): : 2238 - 2251
  • [9] A novel echo state network for multivariate and nonlinear time series prediction
    Shen, Lihua
    Chen, Jihong
    Zeng, Zhigang
    Yang, Jianzhong
    Jin, Jian
    APPLIED SOFT COMPUTING, 2018, 62 : 524 - 535
  • [10] Multi-scale deep echo state network for time series prediction
    Li T.
    Guo Z.
    Li Q.
    Wu Z.
    Neural Computing and Applications, 2024, 36 (21) : 13305 - 13325