Investigating cube-corner indentation hardness and strength relationship under quasi-static and dynamic testing regimes

被引:9
|
作者
Ghosh, Abhi [1 ]
Arreguin-Zavala, Javier [1 ]
Aydin, Huseyin [2 ]
Goldbaum, Dina [3 ]
Chromik, Richard [1 ]
Brochu, Mathieu [1 ]
机构
[1] McGill Univ, Dept Min & Mat Engn, 2 140,Wong Bldg,3610 Univ St, Montreal, PQ H3A 0C5, Canada
[2] TUBITAK Gebze Yerleskesi, Marmara Arastirma Merkezi, Malzeme Enstitusu, TR-41470 Gebzekocaeli, Turkey
[3] Natl Res Council Canada NRC CNRC, Automot & Surface Transportat, 75 Blvd Mortagne, Boucherville, PQ J4B 6Y4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Mechanical characterization; Micromechanics; Nanoindentation; Plasticity; INSTRUMENTED SHARP INDENTATION; REPRESENTATIVE STRAINS; TENSILE PROPERTIES; ELASTIC-MODULUS; METALS;
D O I
10.1016/j.msea.2016.08.067
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Several works in the past have attempted to correlate uniaxial strength and indentation hardness for a range of materials. The proportionality constant,of an indenter provides the basis to the hardness strength relation of a material. Sharp indenter tips like the cube-corner have gained popularity in high strain-rate microtesting. Owing to its low semi-angle, the proportionality constant of a cube-corner indenter tip considerably deviates from the ideal Tabor's hardness-strength relation. A two-dimensional wedge model obtained from the slip-line theory is utilized for computing the theoretical proportionality constant for"the cube-corner tip (similar to 1.81). The validity of computed theoretical proportionality factor for the cube-corner tip is assessed under a range of strain hardening conditions by the inclusion of representative strain under the indenter tip. Proportionality constant and representative strain relationship for a cube-corner indenter tip are assessed for both quasi-static and dynamic strain rate regimes using quasi-static and dynamic indentation hardness, along with quasi-static and dynamic stress-strain (sigma - epsilon) curves. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:534 / 539
页数:6
相关论文
共 22 条
  • [1] The mechanical response characteristics of sapphire under dynamic and quasi-static indentation loading
    Luan, Xiaosheng
    Jiang, Feng
    Wang, Ningchang
    Xu, Xipeng
    Lu, Xizhao
    Wen, Qiuling
    CERAMICS INTERNATIONAL, 2018, 44 (13) : 15208 - 15218
  • [2] The influence of quasi-static loading regimes on the strength of vessels operating under pressure
    Kovshova, Yu. S.
    Kuzeev, I. R.
    Naumkin, E. A.
    Makhutov, N. A.
    Gadenin, M. M.
    INORGANIC MATERIALS, 2015, 51 (15) : 1502 - 1507
  • [3] The influence of quasi-static loading regimes on the strength of vessels operating under pressure
    Yu. S. Kovshova
    I. R. Kuzeev
    E. A. Naumkin
    N. A. Makhutov
    M. M. Gadenin
    Inorganic Materials, 2015, 51 : 1502 - 1507
  • [4] QUASI-STATIC AND DYNAMIC TESTING AS A BASIS FOR DETERMINING SEAT BACK STRENGTH
    Herbst, Brian R.
    Clarke, Chris C.
    Meyer, Steven E.
    Oliver, Arin A.
    Hock, Davis A.
    Hayden, Joshua D.
    Forrest, Stephen M.
    IMECE 2008: SAFETY ENGINEERING, RISK ANALYSIS, AND RELIABILITY METHODS, VOL 16, 2009, : 3 - 10
  • [5] Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation
    Ashab, A. S. M.
    Ruan, Dong
    Lu, Guoxing
    Xu, Shanqing
    Wen, Cuie
    MATERIALS & DESIGN, 2015, 74 : 138 - 149
  • [6] Testing and modelling of annealed float glass under quasi-static and dynamic loading
    Osnes, Karoline
    Borvik, Tore
    Hopperstad, Odd Sture
    ENGINEERING FRACTURE MECHANICS, 2018, 201 : 107 - 129
  • [7] Strength Performance of 1230 Aluminum Alloy under Tension in the Quasi-Static and Dynamic Ranges of Loading Parameters
    A. D. Evstifeev
    G. A. Volkov
    A. A. Chevrychkina
    Yu. V. Petrov
    Technical Physics, 2019, 64 : 620 - 624
  • [8] Strength Performance of 1230 Aluminum Alloy under Tension in the Quasi-Static and Dynamic Ranges of Loading Parameters
    Evstifeev, A. D.
    Volkov, G. A.
    Chevrychkina, A. A.
    Petrov, Yu. V.
    TECHNICAL PHYSICS, 2019, 64 (05) : 620 - 624
  • [9] Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions
    Kucewicz, Michal
    Baranowski, Pawel
    Stankiewicz, Michal
    Konarzewski, Marcin
    Platek, Pawel
    Malachowski, Jerzy
    THIN-WALLED STRUCTURES, 2019, 145
  • [10] Quasi-static and dynamic testing of splitting, expansion and expansion splitting hybrid tubes under oblique loading
    Moreno, C.
    Beaumont, R.
    Hughes, D. J.
    Williams, T.
    Dashwood, R.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2017, 100 : 117 - 130