Extremal solutions of Nevanlinna-Pick problems and certain classes of inner functions

被引:0
|
作者
Galan, Nacho Monreal [1 ]
Nicolau, Artur [2 ]
机构
[1] Univ Crete, Dept Math, Iraklion 70013, Crete, Greece
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2018年 / 134卷 / 01期
关键词
DERIVATIVES;
D O I
10.1007/s11854-018-0004-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a scaled Nevanlinna-Pick interpolation problem and let a be the Blaschke product whose zeros are the nodes of the problem. It is proved that if a belongs to a certain class of inner functions, then the extremal solutions of the problem or most of them are in the same class. Three different classical classes are considered: inner functions whose derivative is in a certain Hardy space, exponential Blaschke products and the well-known class of alpha-Blaschke products, for 0 < alpha < 1.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条