SANDWICH-TYPE RESULTS FOR A CLASS OF CONVEX INTEGRAL OPERATORS

被引:5
|
作者
Bulboaca, Teodor [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Analytic function; starlike and convex function; differential operator; differential subordination;
D O I
10.1016/S0252-9602(12)60074-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(U) be the space of analytic functions in the unit disk U. For the integral operator A(alpha,beta,gamma)(phi,phi) : K -> H(U), with K subset of H(U), defined by A(alpha,beta,gamma)(phi,phi)[f](z) = [beta + gamma/z(gamma)phi(z) integral(z)(0) f(alpha)(t)phi(t)t(delta-1)dt](1/beta), where alpha, beta, gamma, delta is an element of C and phi, phi is an element of H(U), we will determine sufficient conditions on g(1), g(2), alpha, beta and gamma, such that z phi(z)[g(1)(z)/z](alpha) (sic) z phi(z)[f(z)/z](alpha) (sic) z phi(z)[g(2)(z)/z](alpha) implies z phi(z)[A(alpha,beta,gamma)(phi,phi)[f](z)/z](beta) (sic) z phi(z)[A(alpha,)beta,gamma(phi,phi)[g(2)](z)/z](beta). The symbol "(sic)" stands for subordination, and we call such a kind of result a sandwich-type theorem. In addition, z phi(z) [A(alpha,beta,gamma)(phi,phi)[g(1)](z)/z](beta) is the largest function and z phi(z) [A(alpha,beta,gamma)(phi,phi)[g(2)](z)/z](beta) the smallest function so that the left-hand side, respectively the right-hand side of the above implications hold, for all f functions satisfying the assumption. We give a particular case of the main result obtained for appropriate choices of functions phi and phi, that also generalizes classic results of the theory of differential subordination and superordination.
引用
收藏
页码:989 / 1001
页数:13
相关论文
共 50 条