Integrability and renormalization under T(T)over-bar

被引:27
|
作者
Rosenhaus, Vladimir [1 ]
Smolkin, Michael [2 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
来源
PHYSICAL REVIEW D | 2020年 / 102卷 / 06期
关键词
D O I
10.1103/PhysRevD.102.065009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Smirnov and Zamolodchikov recently introduced a new class of two-dimensional quantum field theories, defined through a differential change of any existing theory by the determinant of the energy-momentum tensor. From this T (T) over bar flow equation one can find a simple expression for both the energy spectrum and the S-matrix of the T (T) over bar deformed theories. Our goal is to find the renormalized Lagrangian of the T (T) over bar deformed theories. In the context of the T (T) over bar deformation of an integrable theory, the deformed theory is also integrable and, correspondingly, the S-matrix factorizes into two-to-two S-matrices. One may thus hope to be able to extract the renormalized Lagrangian from the S-matrix. We do this explicitly for the T (T) over bar deformation of a free massive scalar, to second order in the deformation parameter. Once one has the renormalized Lagrangian one can, in principle, compute all other observables, such as correlation functions. We briefly discuss this, as well as the relation between the renormalized Lagrangian, the T (T) over bar flow equation, and the S-matrix. We also mention a more general class of integrability-preserving deformations of a free scalar field theory.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Evidence for t(t)over-barγ production and measurement of σt(t)over-barγ/σt(t)over-bar
    Aaltonen, T.
    Alvarez Gonzalez, B.
    Amerio, S.
    Amidei, D.
    Anastassov, A.
    Annovi, A.
    Antos, J.
    Apollinari, G.
    Appel, J. A.
    Apresyan, A.
    Arisawa, T.
    Artikov, A.
    Asaadi, J.
    Ashmanskas, W.
    Auerbach, B.
    Aurisano, A.
    Azfar, F.
    Badgett, W.
    Barbaro-Galtieri, A.
    Barnes, V. E.
    Barnett, B. A.
    Barria, P.
    Bartos, P.
    Bauce, M.
    Bauer, G.
    Bedeschi, F.
    Beecher, D.
    Behari, S.
    Bellettini, G.
    Bellinger, J.
    Benjamin, D.
    Beretvas, A.
    Bhatti, A.
    Binkley, M.
    Bisello, D.
    Bizjak, I.
    Bland, K. R.
    Blumenfeld, B.
    Bocci, A.
    Bodek, A.
    Bortoletto, D.
    Boudreau, J.
    Boveia, A.
    Brau, B.
    Brigliadori, L.
    Brisuda, A.
    Bromberg, C.
    Brucken, E.
    Bucciantonio, M.
    Budagov, J.
    PHYSICAL REVIEW D, 2011, 84 (03):
  • [2] T(T)over-bar, J(T)over-bar, T(J)over-bar and string theory
    Chakraborty, Soumangsu
    Giveon, Amit
    Kutasov, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (38)
  • [3] TsT, black holes, and T(T)over-bar + J(T)over-bar + T(J)over-bar
    Apolo, Luis
    Song, Wei
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (04):
  • [4] On the flow of states under T(T)over-bar
    Kruthoff, Jorrit
    Parrikar, Onkar
    SCIPOST PHYSICS, 2020, 9 (05):
  • [5] T(T)over-bar, J(T)over-bar, T(J)over-bar partition sums from string theory
    Hashimoto, Akikazu
    Kutasov, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (02):
  • [7] Determination of κt from t(t)over-bar, t(t)over-bart(t)over-bar, and others
    Usai, Emanuele
    NINTH ANNUAL CONFERENCE ON LARGE HADRON COLLIDER PHYSICS, LHCP2021, 2021,
  • [8] Holographic complexity of LST and single trace T(T)over-bar, J(T)over-bar and T(J)over-bar deformations
    Katoch, Gaurav
    Mitra, Swejyoti
    Roy, Shubho R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (10):
  • [9] T(T)over-bar and LST
    Giveon, Amit
    Itzhaki, Nissan
    Kutasov, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [10] Single lepton charge asymmetries in t(t)over-bar and t(t)over-barγ production at the LHC
    Aguilar-Saavedra, J. A.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (06):