A Non-Parametric Inference Technique for Shape Boundaries in Noisy Point Clouds

被引:0
|
作者
Ozgen, Selim [1 ]
Faion, Florian [1 ]
Zea, Antonio [1 ]
Hanebeck, Uwe D. [1 ]
机构
[1] Karlsruhe Inst Technol, Chair Intelligent Sensor Actuator Syst ISAS, Karlsruhe, Germany
关键词
BIAS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores the non-parametric estimation of a shape boundary from noisy points in 2D when the sensor characteristics are known. As the underlying shape information is not known, the offered algorithm estimates points on the shape boundary by using the statistics of the subsets of point cloud data. The novel approach proposed in this paper is able to find corner points in a local geometry by only using sample mean and covariance matrices of the subsets of the point cloud. While the proposed approach can be used for any class of boundary functions that demonstrates symmetry; for this paper, the analysis and experiments are performed on a connected line segment.
引用
收藏
页码:626 / 631
页数:6
相关论文
共 50 条
  • [1] Non-parametric bayesian inference for inhomogeneous markov point processes
    Berthelsen, Kasper K.
    Moller, Jesper
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (03) : 257 - 272
  • [2] Non-parametric segmentation of ALS point clouds using mean shift
    Melzer, Thomas
    JOURNAL OF APPLIED GEODESY, 2007, 1 (03) : 159 - 170
  • [3] Non-parametric inference on the number of equilibria
    Kasy, Maximilian
    ECONOMETRICS JOURNAL, 2015, 18 (01): : 1 - 39
  • [4] Non-Parametric Inference of Relational Dependence
    Ahsan, Ragib
    Fatemi, Zahra
    Arbour, David
    Zheleva, Elena
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 54 - 63
  • [5] Statistical inference in the non-parametric case
    Scheffe, H
    ANNALS OF MATHEMATICAL STATISTICS, 1943, 14 : 305 - 332
  • [6] Non-parametric inference for density modes
    Genovese, Christopher R.
    Perone-Pacifico, Marco
    Verdinelli, Isabella
    Wasserman, Larry
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 99 - 126
  • [7] NON-PARAMETRIC BAYESIAN INFERENCE FOR CHANGE POINT DETECTION IN NEURAL SPIKE TRAINS
    Alt, Bastian
    Messer, Michael
    Roeper, Jochen
    Schneider, Gaby
    Koeppl, Heinz
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 258 - 262
  • [8] Non-parametric inference for balanced randomization designs
    Rukhin, Andrew L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 967 - 984
  • [9] Non-parametric Inference and Coordination for Distributed Robotics
    Julian, Brian J.
    Angermann, Michael
    Rus, Daniela
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2787 - 2794
  • [10] Non-parametric inference on calibration of predicted risks
    Sadatsafavi, Mohsen
    Petkau, John
    STATISTICS IN MEDICINE, 2024, 43 (18) : 3524 - 3538