Bayesian modelling of geostatistical malaria risk data

被引:81
|
作者
Gosoniu, L.
Vounatsou, P. [1 ]
Sogoba, N. [2 ]
Smith, T.
机构
[1] Swiss Trop Inst, Dept Epidemiol & Publ Hlth, CH-4002 Basel, Switzerland
[2] Univ Mali, Malaria Res & Training Ctr, Bamako, Mali
关键词
remote sensing; epidemiology; disease control; arthropod-borne viruses;
D O I
10.4081/gh.2006.287
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locations and independent of location. We relax this assumption and analyse malaria survery data in Mali using a Bayesian non-stationary model. Model fit and predictions are based on Markov chain Monte Carlo simulation methods. Model validation compares the predictive ability of the non-stationary model with the stationary analogue. Results indicate that the stationarity assumption is important because it influences the significance of environmental factors and the corresponding malaria risk maps.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 50 条
  • [1] Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data
    Abbas B Adigun
    Efron N Gajere
    Olusola Oresanya
    Penelope Vounatsou
    Malaria Journal, 14
  • [2] Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data
    Adigun, Abbas B.
    Gajere, Efron N.
    Oresanya, Olusola
    Vounatsou, Penelope
    MALARIA JOURNAL, 2015, 14
  • [3] Bayesian spatial modelling of geostatistical data using INLA and SPDE methods: A case study predicting malaria risk in Mozambique
    Moraga, Paula
    Dean, Christopher
    Inoue, Joshua
    Morawiecki, Piotr
    Noureen, Shahzeb Raja
    Wang, Fengpei
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2021, 39
  • [4] Mapping Malaria Risk in Bangladesh Using Bayesian Geostatistical Models
    Reid, Heidi
    Haque, Ubydul
    Clements, Archie C. A.
    Tatem, Andrew J.
    Vallely, Andrew
    Ahmed, Syed Masud
    Islam, Akramul
    Haque, Rashidul
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 83 (04): : 861 - 867
  • [5] Bayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola
    Gosoniu, Laura
    Veta, Andre Mia
    Vounatsou, Penelope
    PLOS ONE, 2010, 5 (03):
  • [6] Bayesian geostatistical modeling of Angola Malaria Indicator Survey data
    Gosoniu, L.
    Vounatsou, P.
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2009, 14 : 82 - 82
  • [7] Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS)
    Riedel, Nadine
    Vounatsou, Penelope
    Miller, John M.
    Gosoniu, Laura
    Chizema-Kawesha, Elizabeth
    Mukonka, Victor
    Steketee, Rick W.
    MALARIA JOURNAL, 2010, 9
  • [8] Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS)
    Nadine Riedel
    Penelope Vounatsou
    John M Miller
    Laura Gosoniu
    Elizabeth Chizema-Kawesha
    Victor Mukonka
    Rick W Steketee
    Malaria Journal, 9
  • [9] Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity
    Stensgaard, Anna-Sofie
    Vounatsou, Penelope
    Onapa, Ambrose W.
    Simonsen, Paul E.
    Pedersen, Erling M.
    Rahbek, Carsten
    Kristensen, Thomas K.
    MALARIA JOURNAL, 2011, 10
  • [10] Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity
    Anna-Sofie Stensgaard
    Penelope Vounatsou
    Ambrose W Onapa
    Paul E Simonsen
    Erling M Pedersen
    Carsten Rahbek
    Thomas K Kristensen
    Malaria Journal, 10