DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks

被引:93
|
作者
Balaprakash, Prasanna [1 ]
Salim, Michael
Uram, Thomas D.
Vishwanath, Venkat
Wild, Stefan M.
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
关键词
D O I
10.1109/HiPC.2018.00014
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperparameters employed by deep learning (DL) methods play a substantial role in the performance and reliability of these methods in practice. Unfortunately, finding performance-optimizing hyperparameter settings is a notoriously difficult task. Hyperparameter search methods typically have limited production-strength implementations or do not target scalability within a highly parallel machine, portability across different machines, experimental comparison between different methods, and tighter integration with workflow systems. In this paper, we present DeepHyper, a Python package that provides a common interface for the implementation and study of scalable hyperparameter search methods. It adopts the Balsam workflow system to hide the complexities of running large numbers of hyperparameter configurations in parallel on high-performance computing (HPC) systems. We implement and study asynchronous model-based search methods that consist of sampling a small number of input hyperparameter configurations and progressively fitting surrogate models over the input-output space until exhausting a user-defined budget of evaluations. We evaluate the efficacy of these methods relative to approaches such as random search, genetic algorithms, Bayesian optimization, and hyperband on DL benchmarks on CPU- and GPU-based HPC systems.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [1] Enhanced harmony search for hyperparameter tuning of deep neural networks
    Purnomo H.D.
    Gonsalves T.
    Wahyono T.
    Saian P.O.N.
    Soft Computing, 2024, 28 (17-18) : 9905 - 9919
  • [2] Automatic Hyperparameter Tuning in Deep Convolutional Neural Networks Using Asynchronous Reinforcement Learning
    Neary, Patrick L.
    2018 IEEE INTERNATIONAL CONFERENCE ON COGNITIVE COMPUTING (ICCC), 2018, : 73 - 77
  • [3] HyperNOMAD: Hyperparameter Optimization of Deep Neural Networks Using Mesh Adaptive Direct Search
    Lakhmiri, Dounia
    Le Digabel, Sebastien
    Tribes, Christophe
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (03):
  • [4] Optimizing deep neural networks hyperparameter positions and values
    Akl, Ahmed
    El-Henawy, Ibrahim
    Salah, Ahmad
    Li, Kenli
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (05) : 6665 - 6681
  • [5] MAGGY: Scalable Asynchronous Parallel Hyperparameter Search
    Meister, Moritz
    Sheikholeslami, Sina
    Payberah, Amir H.
    Vlassov, Vladimir
    Dowling, Jim
    PROCEEDINGS OF THE 2020 1ST WORKSHOP ON DISTRIBUTED MACHINE LEARNING (DISTRIBUTEDML '20), 2020, : 28 - 33
  • [6] Asynchronous parallel hyperparameter search with population evolution
    Jiang Y.-L.
    Zhao K.
    Cao J.-J.
    Fan J.
    Liu Y.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (08): : 1825 - 1833
  • [7] Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
    Hinz, Tobias
    Navarro-Guerrero, Nicolas
    Magg, Sven
    Wermter, Stefan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2018, 17 (02)
  • [8] HYPERPARAMETER SEARCH FOR DEEP CONVOLUTIONAL NEURAL NETWORK USING EFFECT FACTORS
    Li, Zhenzhen
    Jin, Lianwen
    Yang, Chunlin
    Zhong, Zhuoyao
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 782 - 786
  • [9] Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm
    Vidyabharathi, D.
    Mohanraj, V.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 2559 - 2573
  • [10] Scour modeling using deep neural networks based on hyperparameter optimization
    Asim, Mohammed
    Rashid, Adnan
    Ahmad, Tanvir
    ICT EXPRESS, 2022, 8 (03): : 357 - 362