A Survey of Network Representation Learning Methods for Link Prediction in Biological Network

被引:10
|
作者
Peng, Jiajie [1 ]
Lu, Guilin [1 ]
Shang, Xuequn [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Biological network; link prediction; network analysis; network representation learning; algorithms; development; PROTEIN NETWORKS; TIME-SERIES;
D O I
10.2174/1381612826666200116145057
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Networks are powerful resources for describing complex systems. Link prediction is an important issue in network analysis and has important practical application value. Network representation learning has proven to be useful for network analysis, especially for link prediction tasks. Objective: To review the application of network representation learning on link prediction in a biological network, we summarize recent methods for link prediction in a biological network and discuss the application and significance of network representation learning in link prediction task. Method & Results: We first introduce the widely used link prediction algorithms, then briefly introduce the development of network representation learning methods, focusing on a few widely used methods, and their application in biological network link prediction. Existing studies demonstrate that using network representation learning to predict links in biological networks can achieve better performance. In the end, some possible future directions have been discussed.
引用
收藏
页码:3076 / 3084
页数:9
相关论文
共 50 条
  • [1] Predictive Network Representation Learning for Link Prediction
    Wang, Zhitao
    Chen, Chengyao
    Li, Wenjie
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 969 - 972
  • [2] Attributed Network Representation Learning Approaches for Link Prediction
    Masrour, Farzan
    Tan, Pang-Ning
    Esfahanian, Abdol-Hossein
    VanDam, Courtland
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 560 - 563
  • [3] Survey on Representation Learning Methods of Knowledge Graph for Link Prediction
    Du X.-Y.
    Liu M.-W.
    Shen L.-W.
    Peng X.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (01): : 87 - 117
  • [4] Heterogeneous Combat Network Link Prediction Based on Representation Learning
    Chen, Wenhao
    Li, Jichao
    Jiang, Jiang
    IEEE SYSTEMS JOURNAL, 2021, 15 (03): : 4069 - 4077
  • [5] Link Prediction in Opportunistic Networks Based on Network Representation Learning
    Liu L.
    Song X.
    Chen Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2022, 45 (04): : 64 - 69and103
  • [6] Network Link Prediction Based on Machine Learning Methods
    Chan, Paul
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [7] Learning universal network representation via link prediction by graph convolutional neural network
    Gu W.
    Gao F.
    Li R.
    Zhang J.
    Journal of Social Computing, 2021, 2 (01): : 43 - 51
  • [8] Network Representation Learning: A Survey
    Zhang, Daokun
    Yin, Jie
    Zhu, Xingquan
    Zhang, Chengqi
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (01) : 3 - 28
  • [9] Determinable and interpretable network representation for link prediction
    Yue Deng
    Scientific Reports, 12
  • [10] Determinable and interpretable network representation for link prediction
    Deng, Yue
    SCIENTIFIC REPORTS, 2022, 12 (01)