Determination of Losartan and Triamterene in Pharmaceutical Compounds and Urine Using Cathodic Adsorptive Stripping Voltammetry

被引:19
|
作者
Ensafi, Ali Asghar [1 ]
Hajian, Reza [1 ]
机构
[1] Isfahan Univ Technol, Dept Chem, Esfahan 8415683111, Iran
关键词
D O I
10.2116/analsci.24.1449
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A square-wave voltammetric procedure for the electroanalytical determination of losartan and triamterene in Britton-Robinson buffer (pH 3.0, 0.1 mol L-1) as a supporting electrolyte containing 30 ng mL(-1) of copper ions was developed. Opposite to the case of triamterene, losartan can not be reduced at a mercury electrode alone, but a new peak appears at -0.25 V in the presence of copper due to the formation of a complex between copper(II) and losartan. An accumulation potential of -0.30 V during 80 s for the prior adsorption of losartan-copper(II) and triamterene on the electrode surface was used. The response of the system was found to be linear in the range of 30.0 - 270.0 nmol L-1 for losartan and two linear dynamic ranges containing 0.5 - 200.0 and 200.0 - 400.0 nmol L-1 of triamterene. The limits of detections were 9.7 and 0.3 nmol L-1 for losartan and triamterene, respectively. The relative standard deviations for five replicate analyses of 100.0 and 10.0 nmol L-1 losartan and triamterene were 5.5%. Applicability to assay the drugs in urine and pharmaceutical formulations was illustrated with satisfactory results. The direct-current polarography of triamterene indicates that the reduction of a related drug is strongly dependent on the pH of the solution. A linear segment was found with slope value of -63.6 mV pH(-1) in the pH range of 2.0 - 6.0. The stoichiometry and complex formation constant (beta) for losartan-Cu(II), number of transfer electrons (n), transfer coefficients (alpha) and number of proton transfers were also estimated.
引用
收藏
页码:1449 / 1454
页数:6
相关论文
共 50 条