The present paper is devoted to the further development of the discrete theory of Riemann surfaces, which was started in the papers by M. Baker and S. Norine and their followers at the beginning of the century. This theory considers finite graphs as analogs of Riemann surfaces and branched coverings of graphs as holomorphic mappings. The genus of a graph is defined as the rank of its fundamental group. The main object of investigation in the paper is automorphism groups of a graph acting freely on the set of half-edges of the graph. These groups are discrete analogs of groups of conformal automorphisms of a Riemann surface. The celebrated Hurwitz theorem (1893) states that the order of the group of conformal automorphisms of a compact Riemann surface of genus g > 1 does not exceed 84(g 1). Later, K. Oikawa and T. Arakawa refined this bound in the case of groups that fix several finite sets of prescribed cardinalities. This paper provides proofs of discrete versions of the mentioned theorems. In addition, a discrete analog of the E. Bujalance and G. Gromadzki theorem improving one of Arakawa's results is obtained.
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
Huang, Chao
Zhang, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
Zhang, Qian
Huang, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
Huang, Jianfeng
Yang, Lihua
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China