Optimizing Personalized Ranking in Recommender Systems with Metadata Awareness

被引:0
|
作者
Manzato, Marcelo G. [1 ]
Domingues, Marcos A. [1 ]
Rezende, Solange O. [1 ]
机构
[1] Univ Sao Paulo, Math & Comp Inst, Sao Carlos, SP, Brazil
关键词
D O I
10.1109/WI-IAT.2014.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an item recommendation algorithm based on latent factors which uses implicit feedback from users to optimize the ranking of items according to individual preferences. The novelty of the algorithm is the integration of content metadata to improve the quality of recommendations. Such descriptions are an important source to construct a personalized set of items which are meaningfully related to the user's main interests. The method is evaluated on two different datasets, being compared against another approach reported in the literature. The results demonstrate the effectiveness of supporting personalized ranking with metadata awareness.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 50 条
  • [1] Applying Multi-View Based Metadata in Personalized Ranking for Recommender Systems
    Domingues, Marcos A.
    Sundermann, Camila V.
    Barros, Flavio M. M.
    Manzato, Marcelo G.
    Pimentel, Maria G. C.
    Rezende, Solange O.
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 1105 - 1107
  • [2] Improving Personalized Ranking in Recommender Systems with Multimodal Interactions
    da Costa, Arthur F.
    Domingues, Marcos A.
    Rezende, Solange O.
    Manzato, Marcelo G.
    2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2014, : 198 - 204
  • [3] Improving Personalized Ranking in Recommender Systems with Topic Hierarchies and Implicit Feedback
    Manzato, Marcelo G.
    Domingues, Marcos A.
    Marcacini, Ricardo M.
    Rezende, Solange O.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3696 - 3701
  • [4] Metadata Based Recommender Systems
    Mittal, Paritosh
    Jain, Aishwarya
    Majumdar, Angshul
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 2659 - 2664
  • [5] CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
    Naghiaei, Mohammadmehdi
    Rahmani, Hossein A.
    Deldjoo, Yashar
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 770 - 779
  • [6] Recommender Systems for Personalized Gamification
    Tondello, Gustavo F.
    Orji, Rita
    Nacke, Lennart E.
    ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), 2017, : 425 - 430
  • [7] Situation awareness for recommender systems
    Richthammer, Christian
    Pernul, Guenther
    ELECTRONIC COMMERCE RESEARCH, 2020, 20 (04) : 783 - 806
  • [8] Streaming Ranking Based Recommender Systems
    Wang, Weiqing
    Yin, Hongzhi
    Huang, Zi
    Wang, Qinyong
    Du, Xingzhong
    Quoc Viet Hung Nguyen
    ACM/SIGIR PROCEEDINGS 2018, 2018, : 525 - 534
  • [9] Situation awareness for recommender systems
    Christian Richthammer
    Günther Pernul
    Electronic Commerce Research, 2020, 20 : 783 - 806
  • [10] An Approach To Hybrid Personalized Recommender Systems
    Duzen, Zafer
    Aktas, Mehmet S.
    PROCEEDINGS OF THE 2016 INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2016,