Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation

被引:9
|
作者
Shtyrina, Olga, V [1 ,2 ]
Yarutkina, Irina A. [1 ]
Skidin, Anton S. [1 ]
Podivilov, Evgeny, V [1 ,3 ]
Fedorukt, Mikhail P. [1 ,2 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova St, Novosibirsk 630090, Russia
[2] Inst Computat Technol SB RAS, 6 Ac Lavrentiev Ave, Novosibirsk 630090, Russia
[3] Inst Automat & Electrometry SB RAS, 1 Ac Koptyug Ave, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
DISSIPATIVE SOLITONS; FIBER LASER; ENERGY; GENERATION;
D O I
10.1364/OE.27.006711
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study highly chirped analytical solutions of the cubic-quintic Ginzburg-Landau equation with the gain saturation. Based on the analysis, we propose the analytical method of estimating the stable generation area in a long fiber laser. The results allow us to predict the stable generation in long-cavity fiber lasers without performing full mathematical modeling. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6711 / 6718
页数:8
相关论文
共 50 条
  • [1] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [2] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [3] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [4] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Conte, Robert
    Ng, Tuen-Wai
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 153 - 166
  • [5] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, NN
    Afanasjev, VV
    SotoCrespo, JM
    PHYSICAL REVIEW E, 1996, 53 (01) : 1190 - 1201
  • [6] Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation
    Murali, R.
    Porsezian, K.
    Kofane, T. C.
    Mohamadou, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [7] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Robert Conte
    Tuen-Wai Ng
    Acta Applicandae Mathematicae, 2012, 122 : 153 - 166
  • [8] Exact Solutions for 2D cubic-quintic Ginzburg-Landau equation
    Shi, Ye-qiong
    Dai, Zheng-de
    Han, Song
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [9] Exploding soliton and front solutions of the complex cubic-quintic Ginzburg-Landau equation
    Soto-Crespo, JM
    Akhmediev, N
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (5-6) : 526 - 536
  • [10] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, N.N.
    Afanasjev, V.V.
    Soto-Crespo, J.M.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (1-B pt B):