Junction layer analysis in one-dimensional steady-state Euler-Poisson equations

被引:1
|
作者
Peng, Yue-Jun [1 ]
Yang, Yong-Fu [2 ,3 ]
机构
[1] Univ Clermont Ferrand 2, CNRS, UMR 6620, Math Lab, F-63177 Aubiere, France
[2] Hohai Univ, Coll Sci, Dept Math, Jiangsu 210098, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
quasi-neutral limit; junction layers; Euler-Poisson system; asymptotic analysis; semiconductors;
D O I
10.1016/j.jmaa.2008.02.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the quasi-neutral limit in one-dimensional steady-state Euler-Poisson equations with junction layers. Typically, the junction layer phenomenon occurs in a ballistic diode of a semiconductor device where the doping profile is a discontinuous function. We derive the junction layer equations and prove the existence of their solutions which decay exponentially. Finally, we justify the quasi-neutral limit with junction layers by giving uniform error estimates. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 448
页数:9
相关论文
共 50 条
  • [1] Some asymptotic analysis in steady-state Euler-Poisson equations for potential flow
    Peng, YJ
    ASYMPTOTIC ANALYSIS, 2003, 36 (01) : 75 - 92
  • [2] On the Steady State Relativistic Euler-Poisson Equations
    Mai, La-Su
    Li, Jingyu
    Zhang, Kaijun
    ACTA APPLICANDAE MATHEMATICAE, 2013, 125 (01) : 135 - 157
  • [3] ON STEADY-STATE EULER-POISSON MODELS FOR SEMICONDUCTORS
    MARKOWICH, PA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1991, 42 (03): : 389 - 407
  • [4] On the Steady State Relativistic Euler-Poisson Equations
    La-Su Mai
    Jingyu Li
    Kaijun Zhang
    Acta Applicandae Mathematicae, 2013, 125 : 135 - 157
  • [5] Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations
    Luo, Tao
    Rauch, Jeffrey
    Xie, Chunjing
    Xin, Zhouping
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) : 787 - 827
  • [6] A steady-state quantum Euler-Poisson system for potential flows
    Jungel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (02) : 463 - 479
  • [7] Critical thresholds in one-dimensional damped Euler-Poisson systems
    Bhatnagar, Manas
    Liu, Hailiang
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (05): : 891 - 916
  • [8] ASYMPTOTIC STABILITY OF STEADY STATE SOLUTIONS FOR THE RELATIVISTIC EULER-POISSON EQUATIONS
    Mai, La-Su
    Zhang, Kaijun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 981 - 1004
  • [9] Irrotational approximation to the one-dimensional bipolar Euler-Poisson system
    Geng, Jinbo
    Zhang, Yongqian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 13 - 23
  • [10] Asymptotic expansions in a steady state Euler-Poisson system and convergence to incompressible Euler equations
    Peng, YJ
    Violet, I
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (05): : 717 - 736