MISE-OPTIMAL GROUPING OF POINT-PROCESS DATA WITH A CONSTANT DISPERSION RATIO

被引:0
|
作者
Chen, Huifen [1 ]
Schmeiser, Bruce [2 ]
机构
[1] Chung Yuan Christian Univ, Dept Ind & Syst Engn, Taoyuan 320, Taiwan
[2] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
关键词
NONHOMOGENEOUS POISSON-PROCESS; CUMULATIVE INTENSITY FUNCTION; NONPARAMETRIC-ESTIMATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set of point-process event times with constant dispersion ratio, we are interested in estimating the rate function by grouping the event times into count data from equal-width time intervals. We group in order to smooth the resulting piecewise-constant rate function using one of our two existing methods: I-SMOOTH and MNO-PQRS. Using the mean integrated squared error (MISE) for piecewise-constant rate functions, we create two estimators; minimizing the estimated MISE function yields the chosen number of intervals. The MISE function provides insights into the optimal number of intervals as a function of the rate-function shape and expected number of events. Across several examples, our two number-of-intervals estimators perform well and similarly; nevertheless, one dominates in terms of realized MISE value.
引用
收藏
页码:1563 / 1574
页数:12
相关论文
共 11 条
  • [1] A rotation test for behavioural point-process data
    Deruiter, Stacy L.
    Solow, Andrew R.
    ANIMAL BEHAVIOUR, 2008, 76 : 1429 - 1434
  • [2] Nonparametric analysis of earthquake point-process data
    Choi, E
    Hall, P
    STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET, 2001, 36 : 324 - 344
  • [3] On the Estimation of Periodicity or Almost Periodicity in Inhomogeneous Gamma Point-Process Data
    Saul Gaitan, Rodrigo
    Lii, Keh-Shin
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (5-6) : 711 - 736
  • [4] Measuring the Rate of Information Exchange in Point-Process Data With Application to Cardiovascular Variability
    Mijatovic, Gorana
    Pernice, Riccardo
    Perinelli, Alessio
    Antonacci, Yuri
    Busacca, Alessandro
    Javorka, Michal
    Ricci, Leonardo
    Faes, Luca
    FRONTIERS IN NETWORK PHYSIOLOGY, 2022, 1
  • [5] Measuring the Rate of Information Transfer in Point-Process Data: Application to Cardiovascular Interactions
    Mijatovic, Gorana
    Antonacci, Yuri
    Faes, Luca
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 341 - 344
  • [6] Partial-Likelihood Analysis of Spatio-Temporal Point-Process Data
    Diggle, Peter J.
    Kaimi, Irene
    Abellana, Rosa
    BIOMETRICS, 2010, 66 (02) : 347 - 354
  • [7] Underwater Minefield Detection in Clutter Data Using Spatial Point-Process Models
    Bryner, Darshan
    Huffer, Fred
    Srivastava, Anuj
    Tucker, J. Derek
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2016, 41 (03) : 670 - 681
  • [8] Point-process models of social network interactions: Parameter estimation and missing data recovery
    Zipkin, Joseph R.
    Schoenberg, Frederic P.
    Coronges, Kathryn
    Bertozzi, Andrea L.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (03) : 502 - 529
  • [9] Application of a point-process model to occurrence-time data of photomultiplier dark pulses
    Ohsuka, S
    Ogata, Y
    Tamura, Y
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 384 (2-3): : 477 - 481
  • [10] THE ROLE OF LIKELIHOOD AND ENTROPY IN INCOMPLETE-DATA PROBLEMS - APPLICATIONS TO ESTIMATING POINT-PROCESS INTENSITIES AND TOEPLITZ CONSTRAINED COVARIANCES
    MILLER, MI
    SNYDER, DL
    PROCEEDINGS OF THE IEEE, 1987, 75 (07) : 892 - 907