HieNet Architecture using the K-Iterations Fast Learning Artificial Neural Networks

被引:0
|
作者
Tay, L. P. [1 ]
Zurada, J. M. [2 ]
Wong, L. P. [3 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
[2] Univ Louisville, Dept Elect & Comp Engn, Louvain, Belgium
[3] Nanyang Technol Univ, ASTAR BII, Nanyo, Yamagata, Japan
关键词
Hierarchical Networks; Homogeneous Feature Spaces; Hybrid Networks; Data Presentation Sequence; Curse of Dimensionality;
D O I
10.1109/IJCNN.2008.4633814
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a hierarchical architecture, HieNet, that utilizes the K-Iterations Fast Learning artificial Neural Network (KFLANN). Effective in its clustering capabilities, the KFLANN is capable of providing more stable and consistent clusters that are independent data presentation sequences (DPS). Leveraging on the ability to provide more consistent clusters, the KFLANN is initially used to identify the homogeneous Feature Spaces that prepare large dimensional networks for a hierarchical organization. We illustrate how this hierarchical structure can be constructed through the recurring use of the KFLANN and support our work with experimental results.
引用
收藏
页码:338 / 345
页数:8
相关论文
共 50 条
  • [1] Progressive learning paradigms using the parallel K-Iterations fast learning artificial neural network
    Ho, Raymond C. K.
    Tay, Alex L. P.
    Zhang, Xuejie
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 552 - +
  • [2] Fast Learning Architecture for Neural Networks
    Zhang Ming Jun
    Garcia, Samuel
    Terre, Michel
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1611 - 1615
  • [3] Centroid stability with K-Means Fast Learning Artificial Neural Networks
    Ping, WL
    Phuan, ATL
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1517 - 1522
  • [4] Fast relational learning using bottom clause propositionalization with artificial neural networks
    Manoel V. M. França
    Gerson Zaverucha
    Artur S. d’Avila Garcez
    Machine Learning, 2014, 94 : 81 - 104
  • [5] Fast relational learning using bottom clause propositionalization with artificial neural networks
    Franca, Manoel V. M.
    Zaverucha, Gerson
    Garcez, Artur S. d'Avila
    MACHINE LEARNING, 2014, 94 (01) : 81 - 104
  • [6] Feature extraction using the K-Means Fast Learning Artificial Neural Network
    Xiang, Y
    Phuan, ATL
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1004 - 1008
  • [7] Liquid drop photonic signal analysis using fast learning artificial neural networks
    Ping, WL
    Jian, X
    Phuan, ATL
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1018 - 1022
  • [8] Fast learning artificial neural networks for continuous input applications
    Evans, DJ
    Tay, LP
    KYBERNETES, 1995, 24 (03) : 11 - &
  • [9] Fast text compression using artificial neural networks
    Sriram, MP
    Dinesh, A
    SOFT COMPUTING AND INDUSTRY: RECENT APPLICATIONS, 2002, : 527 - 533
  • [10] Architecture performance prediction using evolutionary artificial neural networks
    Castillo, P. A.
    Mora, A. M.
    Merelo, J. J.
    Laredo, J. L. J.
    Moreto, M.
    Cazorla, F. J.
    Valero, M.
    Mckee, S. A.
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 175 - +