Roles of p53, Myc and HIF-1 in Regulating Glycolysis - the Seventh Hallmark of Cancer

被引:401
|
作者
Yeung, S. J. [1 ,2 ]
Pan, J. [3 ]
Lee, M. -H.
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Gen Internal Med Ambulatory Treatment & Emer, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Endocrine Neoplasia & Hormonal Disorders, Houston, TX 77030 USA
[3] Sun Yat Sen Univ, Sch Med, Dept Pathophysiol, Guangzhou 510275, Guangdong, Peoples R China
关键词
Oncogenes; tumor suppressors; signaling pathways; mTOR; MYC; p53; HIF-1; glycolysis; Warburg phenomenon;
D O I
10.1007/s00018-008-8224-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite diversity in genetic events in oncogenesis, cancer cells exhibit a common set of functional characteristics. Otto Warburg discovered that cancer cells have consistently higher rates of glycolysis than normal cells. The underlying mechanisms leading to the Warburg phenomenon include mitochondrial changes, upregulation of rate-limiting enzymes/proteins in glycolysis and intracellular pH regulation, hypoxia-induced switch to anaerobic metabolism, and metabolic reprogramming after loss of p53 function. The regulation of energy metabolism can be traced to a "triad" of transcription factors: c-MYC, HIF-1 and p53. Oncogenetic changes involve a nonrandom set of gene deletions, amplifications and mutations, and many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate c-MYC, HIF-1 and p53. Glycolysis in cancer cells has clinical implications in cancer diagnosis, treatment and interaction with diabetes mellitus. Many drugs targeting energy metabolism are in development. Future advances in technology may bring about transcriptome and metabolome-guided chemotherapy.
引用
收藏
页码:3981 / 3999
页数:19
相关论文
共 50 条
  • [1] Roles of p53, Myc and HIF-1 in Regulating Glycolysis — the Seventh Hallmark of Cancer
    S. J. Yeung
    J. Pan
    M.-H. Lee
    Cellular and Molecular Life Sciences, 2008, 65
  • [2] A role for MnSOD and p53 in regulating HIF-1 alpha in breast cancer cell lines
    Jetawattana, S
    Venkataraman, S
    Domann, F
    Oberley, L
    FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 : S166 - S166
  • [3] HIF-1α and p53:: the ODD couple?
    Fels, DR
    Koumenis, C
    TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (08) : 426 - 429
  • [4] HIF-transcribed p53 chaperones HIF-1α
    Madan, Esha
    Parker, Taylor M.
    Pelham, Christopher J.
    Palma, Antonio M.
    Peixoto, Maria L.
    Nagane, Masaki
    Chandaria, Aliya
    Tomas, Ana R.
    Canas-Marques, Rita
    Henriques, Vanessa
    Galzerano, Antonio
    Cabral-Teixeira, Joaquim
    Selvendiran, Karuppaiyah
    Kuppusamy, Periannan
    Carvalho, Carlos
    Beltran, Antonio
    Moreno, Eduardo
    Pati, Uttam K.
    Gogna, Rajan
    NUCLEIC ACIDS RESEARCH, 2019, 47 (19) : 10212 - 10234
  • [5] Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1
    Leszczynska, Katarzyna B.
    Goettgens, Eva-Leonne
    Biasoli, Deborah
    Olcina, Monica M.
    Ient, Jonathan
    Anbalagan, Selvakumar
    Bernhardt, Stephan
    Giaccia, Amato J.
    Hammond, Ester M.
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1
    Katarzyna B. Leszczynska
    Eva-Leonne Göttgens
    Deborah Biasoli
    Monica M. Olcina
    Jonathan Ient
    Selvakumar Anbalagan
    Stephan Bernhardt
    Amato J. Giaccia
    Ester M. Hammond
    Scientific Reports, 6
  • [7] The effect of HIF-1 inhibition on the p53 pathway
    Franzen, Lina
    Williams, Kaye
    Stratford, Ian
    MOLECULAR CANCER THERAPEUTICS, 2007, 6 (12) : 3493S - 3494S
  • [8] Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells
    Trejo-Solis, Cristina
    Castillo-Rodriguez, Rosa Angelica
    Serrano-Garcia, Norma
    Silva-Adaya, Daniela
    Vargas-Cruz, Salvador
    Chavez-Cortez, Elda Georgina
    Gallardo-Perez, Juan Carlos
    Zavala-Vega, Sergio
    Cruz-Salgado, Arturo
    Magana-Maldonado, Roxana
    METABOLITES, 2024, 14 (05)
  • [9] MARK2 potentiate aerobic glycolysis-mediated cell growth in breast cancer through regulating mTOR/HIF-1α and p53 pathways
    Ponnusamy, Lavanya
    Natarajan, Sathan Raj
    Manoharan, Ravi
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2022, 123 (04) : 759 - 771
  • [10] Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis
    Zhou, Xiangyang
    Wu, Di
    Zhu, Linmiao
    Li, Ruohan
    Yu, Haitao
    Li, Wenjuan
    CURRENT CANCER DRUG TARGETS, 2024, 24 (05) : 534 - 545