Shock response of polycrystalline silicon carbide undergoing inelastic deformation

被引:46
|
作者
Feng, R [1 ]
Raiser, GF [1 ]
Gupta, YM [1 ]
机构
[1] WASHINGTON STATE UNIV,DEPT PHYS,PULLMAN,WA 99164
关键词
D O I
10.1063/1.361036
中图分类号
O59 [应用物理学];
学科分类号
摘要
Longitudinal stress profiles have been measured in polycrystalline silicon carbide (SIG) shocked to peak stresses from 7.3 to 23 GPa. Dispersive wave fronts, consistent with the expected inelastic response, were observed beyond the previously reported Hugoniot elastic limit (HEL) of 11.7 GPa. Detailed numerical analyses were carried out to interpret the observed inelastic response using both a strain-hardening, plasticity model and a pressure-dependent strength, stress relaxation model. Both models show good agreement with the data; the latter provides a better fit to the transient features in the measurements suggesting rate dependence in the material response. The computed Hugoniot curve matches all of the peak state data for two different types of SiC that display more than 20 % variation in HEL. This suggests that the measured HEL for SiC is not a proper indicator of the material strength in the shocked state. The results also show that the longitudinal data and analyses are insufficient to resolve issues related to material strength and mechanisms governing inelastic deformation in shocked SiC. The need for a more complete characterization of the shock response of a high-strength brittle material is discussed. (C) 1996 American Institute of Physics.
引用
收藏
页码:1378 / 1387
页数:10
相关论文
共 50 条
  • [1] Material strength and inelastic deformation of silicon carbide under shock wave compression
    Feng, R
    Raiser, GF
    Gupta, YM
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (01) : 79 - 86
  • [2] Nanoscale investigation of deformation characteristics in a polycrystalline silicon carbide
    Zhang, D.
    Zhao, L. G.
    Roy, A.
    Chiu, Y. -L.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2020, 56 (03) : 951 - 967
  • [3] Nanoscale investigation of deformation characteristics in a polycrystalline silicon carbide
    D. Zhang
    L. G. Zhao
    A. Roy
    Y.-L. Chiu
    Journal of the Australian Ceramic Society, 2020, 56 : 951 - 967
  • [4] Inelastic response of silicon to shock compression
    Higginbotham, A.
    Stubley, P. G.
    Comley, A. J.
    Eggert, J. H.
    Foster, J. M.
    Kalantar, D. H.
    McGonegle, D.
    Patel, S.
    Peacock, L. J.
    Rothman, S. D.
    Smith, R. F.
    Suggit, M. J.
    Wark, J. S.
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Inelastic response of silicon to shock compression
    A. Higginbotham
    P. G. Stubley
    A. J. Comley
    J. H. Eggert
    J. M. Foster
    D. H. Kalantar
    D. McGonegle
    S. Patel
    L. J. Peacock
    S. D. Rothman
    R. F. Smith
    M. J. Suggit
    J. S. Wark
    Scientific Reports, 6
  • [6] Simulations of the inelastic response of silicon to shock compression
    Stubley, P. G.
    Higginbotham, A.
    Wark, J. S.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 128 : 121 - 126
  • [7] Modeling the shock response of silicon carbide, boron carbide and titanium diboride
    Rajendran, AM
    Grove, DJ
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1996, 18 (06) : 611 - 631
  • [8] Inelastic deformation and phase transformation of shock compressed silicon single crystals
    Turneaure, Stefan J.
    Gupta, Y. M.
    APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [9] XRD and XTEM investigation of polycrystalline silicon carbide on polycrystalline silicon
    Roy, S
    Zorman, CA
    Wu, CH
    Fleischman, AJ
    Mehregany, M
    MATERIALS FOR MECHANICAL AND OPTICAL MICROSYSTEMS, 1997, 444 : 81 - 86
  • [10] Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation
    Shi Y.
    Chen X.
    Wu X.
    Wang H.
    Guo X.
    Li J.
    Wang, Hongjun (1991100119@niit.edu.cn), 1600, Chinese Journal of Materials Research (34): : 628 - 634