A Monte Carlo intercomparison of peak-to-valley dose ratios and output factors for microbeam radiation therapy

被引:4
|
作者
Reynard, Dimitri [1 ,2 ]
Hugtenburg, Richard P. [2 ,3 ]
机构
[1] Univ Grenoble Alpes, 15 Rue Univ, F-38400 St Martin Dheres, France
[2] Swansea Univ, Singleton Pk Campus, Swansea SA2 8PP, W Glam, Wales
[3] Singleton Hosp, Swansea Bay Univ Hlth Board, Swansea SA2 8QA, W Glam, Wales
关键词
Microbeam radiation therapy; Monte Carlo; Compton scattering; SIMULATION; ELECTRON; PHOTON; MRT; TRANSPORT; ALGORITHM; PHYSICS; MODEL;
D O I
10.1016/j.radphyschem.2020.108980
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A comparison between EGSnrc, Penelope and Geant4 has been made for dosimetry applied to Microbeam Radiation Therapy (MRT). A simple geometry is defined to limit the number of influential parameters and to focus primarily on the dose associated with scattered photons. Use was made of a precalculated photon spectrum for the ESRF ID17 Medical beamline ranging from 40 to 300 keV with a mean energy of 107 keV. In MRT, Compton scattering is the main photon interaction in soft tissue, with the photoelectric effect contributing more substantially in bone. The study investigates differences in the way Compton scattering is handled by the different codes which lead to differences of up to 4% for the simulation of relevant dosimetric quantities in MRT, despite the fact that the cross-section data comes from the same source. There is no significant pattern in the way the codes behave and depending on the dosimetric quantity involved, the agreement between the codes varies. The agreement for each dosimetric quantities is enhanced at large depths where beam-hardening increases the mean energy of the beam and lowers the influence of Doppler broadening and electron binding effects, allowing the codes to use less corrections to the Klein-Nishina model which the three codes implement in the same way.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Monte Carlo assessment of peak-to-valley dose ratio for MRT
    De Felici, A.
    Felici, R.
    Ferrero, C.
    Bravin, A.
    Tartari, A.
    Gambaccini, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 580 (01): : 489 - 492
  • [2] Monte Carlo dose enhancement studies in microbeam radiation therapy
    Martinez-Rovira, I.
    Prezado, Y.
    MEDICAL PHYSICS, 2011, 38 (07) : 4430 - 4439
  • [3] Monte Carlo code comparison of dose delivery prediction for Microbeam Radiation Therapy
    de Felici, M.
    Siegbahn, E. A.
    Spiga, J.
    Hanson, A. L.
    Felici, R.
    Ferrero, C.
    Tartari, A.
    Gambaccini, M.
    Keyrilaeinen, J.
    Braeuer-Krisch, E.
    Randaccio, P.
    Bravin, A.
    INTERNATIONAL WORKSHOP ON MONTE CARLO TECHNIQUES IN RADIOTHERAPY DELIVERY AND VERIFICATION - THIRD MCGILL INTERNATIONAL WORKSHOP, 2008, 102
  • [4] MONTE CARLO DOSIMETRY FOR THE CLINICAL TRIALS IN MICROBEAM RADIATION THERAPY
    Martinez-Rovira, I.
    Alonso, Y. Prezado
    Sempau, J.
    Fernandez-Varea, J. M.
    Bravin, A.
    RADIOTHERAPY AND ONCOLOGY, 2009, 92 : S71 - S72
  • [5] Maximization of Peak-to-Valley Dose Ratio and Normal-Tissue Survival Fraction for Proton Minibeam Radiation Therapy
    Zhang, W.
    Li, W.
    Lin, Y.
    Wang, F.
    Chen, R. C.
    Gao, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E581 - E581
  • [6] Experimentally determined vs. Monte Carlo simulated peak-to-valley ratios for a well-characterised n-type HPGe detector
    Ostlund, Karl
    Samuelsson, Christer
    Raaf, Christopher L.
    APPLIED RADIATION AND ISOTOPES, 2015, 95 : 94 - 100
  • [7] Dosimetric studies of microbeam radiation therapy (MRT) with Monte Carlo simulations
    Siegbahn, EA
    Bräuer-Krisch, E
    Stepanek, J
    Blattmann, H
    Laissue, JA
    Bravin, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 548 (1-2): : 54 - 58
  • [8] Monte Carlo modelling of a silicon strip detector for microbeam radiation therapy
    Cullen, Ashley
    Lerch, Michael
    Petasecca, Marco
    Rosenfeld, Anatoly
    RADIATION MEASUREMENTS, 2011, 46 (12) : 1646 - 1649
  • [9] Monte Carlo for radiation therapy dose calculations
    Siebers, J
    MEDICAL PHYSICS, 2002, 29 (06) : 1303 - 1303
  • [10] Biological Optimization of Peak-To-Valley Dose Ratio and Normal-Tissue Survival Fraction for Proton Minibeam Radiation Therapy
    Zhang, W.
    Li, W.
    Lin, Y.
    Wang, F.
    Chen, R.
    Gao, H.
    MEDICAL PHYSICS, 2022, 49 (06) : E209 - E210