On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative

被引:27
|
作者
Feng, Yi-Ying [1 ,2 ]
Yang, Xiao-Jun [1 ,2 ,3 ]
Liu, Jian-Gen [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Combined Caputo fractional derivatives; Extension Laplace transform; Stehfest method; Viscoelasticity; Maxwell model; PARTICLE; EQUATION;
D O I
10.1016/j.cjph.2020.05.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The primary purpose of this paper is to analyze the overall behavior of fractional Maxwell model. The approach used in our study is known as the combined Caputo fractional derivative with pioneer work: the extension Laplace transform (ELT) which broaden the lower limit of the classical Laplace transform. Through the ELT and the Stehfest method, we obtain the strain re-sponse of the fractional Maxwell model with different parameters. It is concluded that the ob-tained results show the variation trend of strain response in a more accurate way.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [1] Unexpected behavior of Caputo fractional derivative
    Lucas Kenjy Bazaglia Kuroda
    Arianne Vellasco Gomes
    Robinson Tavoni
    Paulo Fernando de Arruda Mancera
    Najla Varalta
    Rubens de Figueiredo Camargo
    Computational and Applied Mathematics, 2017, 36 : 1173 - 1183
  • [2] Unexpected behavior of Caputo fractional derivative
    Bazaglia Kuroda, Lucas Kenjy
    Gomes, Arianne Vellasco
    Tavoni, Robinson
    de Arruda Mancera, Paulo Fernando
    Varalta, Najla
    Camargo, Rubens de Figueiredo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1173 - 1183
  • [3] Dynamical Behavior of the Glycolysis Model Involving the Fractional Caputo Derivative
    Mesdoui, Fatiha
    Belmahi, Naziha
    Romano, Raffaele
    Cattani, Piercarlo
    Villecco, Francesco
    NEW TECHNOLOGIES, DEVELOPMENT AND APPLICATION VII, VOL 1, NT 2024, 2024, 1069 : 193 - 200
  • [4] FRACTIONAL CALCULUS OF VARIATIONS FOR A COMBINED CAPUTO DERIVATIVE
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) : 523 - 537
  • [5] Fractional calculus of variations for a combined Caputo derivative
    Agnieszka B. Malinowska
    Delfim F. M. Torres
    Fractional Calculus and Applied Analysis, 2011, 14 : 523 - 537
  • [6] Viscoelastic behavior analysis and application of the fractional derivative Maxwell model
    Jia, Jiu-Hong
    Shen, Xiao-Yao
    Hua, Hong-Xing
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (04) : 385 - 401
  • [7] A unified Maxwell model with time-varying viscosity via Ψ-Caputo fractional derivative coined
    Li, Jing
    Ma, Li
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [8] Multiobjective fractional variational calculus in terms of a combined Caputo derivative
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5099 - 5111
  • [9] A fractional order human papillomavirus model with Caputo derivative
    Rajan, Praveen Kumar
    Kuppusamy, Murugesan
    JOURNAL OF ANALYSIS, 2024, 32 (04): : 2135 - 2156
  • [10] An epidemiological MSEIR model described by the Caputo fractional derivative
    Almeida R.
    Brito da Cruz A.M.C.
    Martins N.
    Monteiro M.T.T.
    International Journal of Dynamics and Control, 2019, 7 (02): : 776 - 784