Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One

被引:1
|
作者
Gamez, Jose L. [2 ]
Ruiz-Hidalgo, Juan F. [1 ]
机构
[1] Univ Granada, Fac Ciencias Educ, Dept Didact Matemat, E-18071 Granada, Spain
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
BOUNDARY-VALUE PROBLEM; PERIODIC PERTURBATIONS; LINEAR PART; MAXIMUM;
D O I
10.1155/2012/284696
中图分类号
学科分类号
摘要
This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem -u '' (t) = lambda u(t) + g(t, u(t)), u is an element of H-0(1)(0, pi), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g we obtain computable integral values which will decide the behavior of the bifurcations and, consequently, the possibility of finding solutions of the resonant problems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one
    Dancer, EN
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 533 - 538
  • [2] Transmission eigenvalues in one dimension
    Sylvester, John
    INVERSE PROBLEMS, 2013, 29 (10)
  • [4] BIFURCATION FROM INFINITY
    ROSENBLAT, S
    DAVIS, SH
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 37 (01) : 1 - 19
  • [5] BIFURCATION FROM INFINITY
    RABINOWITZ, PH
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (03) : 462 - 475
  • [6] Bifurcation from infinity and multiplicity results for an elliptic system from biology
    Li, Chunqiu
    Peng, Zhen
    ASYMPTOTIC ANALYSIS, 2023, 134 (03) : 413 - 436
  • [7] Mixed principal eigenvalues in dimension one
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    Frontiers of Mathematics in China, 2013, 8 : 317 - 343
  • [8] Mixed principal eigenvalues in dimension one
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (02) : 317 - 343
  • [9] Complex Transmission Eigenvalues in One Dimension
    Zhang, Yalin
    Wang, Yanling
    Shi, Guoliang
    Liao, Shizhong
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] GLOBAL BIFURCATION FROM INFINITY IN NONLINEAR ONE DIMENSIONAL DIRAC PROBLEMS
    Rzayeva, Humay Sh
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2019, 45 (01): : 146 - 154