New nonlinear multi-scale models for wrinkled membranes

被引:24
|
作者
Damil, Noureddine [1 ]
Potier-Ferry, Michel [2 ,3 ]
Hu, Heng [4 ]
机构
[1] Univ Hassan II Mohammedia Casablanca, Fac Sci Ben MSik, Lab Ingn & Mat, LIMAT, Casablanca, Morocco
[2] Univ Lorraine, Lab Etud Microstruct & Mecan Mat, UMR CNRS 7239, LEM3, F-57045 Metz 01, France
[3] Univ Lorraine, Lab Excellence Design Alloy Met Low Mass Struct D, F-57045 Metz 01, France
[4] Wuhan Univ, Sch Civil Engn, Wuhan 430072, Peoples R China
来源
COMPTES RENDUS MECANIQUE | 2013年 / 341卷 / 08期
关键词
Wrinkling; Membrane; Slowly variable Fourier coefficients; Multi-scale; INSTABILITY PATTERN-FORMATION; SLACK MEMBRANES; SCALE ANALYSIS; ELEMENT; BEHAVIOR; TENSION;
D O I
10.1016/j.crme.2013.06.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new macroscopic approach to the modelling of membrane wrinkling is presented. Most of the studies of the literature about membrane behaviour are macroscopic and phenomenological, the influence of wrinkles being accounted for by nonlinear constitutive laws without compressive stiffness. The present method is multi-scale and it permits to predict the wavelength and the spatial distribution of wrinkling amplitude. It belongs to the family of Landau-Ginzburg bifurcation equations and especially relies on the technique of Fourier series with slowly varying coefficients. The result is a new family of macroscopic membrane models that are deduced from Foppl-von Karman plate equations. Numerical solutions are presented, giving the size of the wrinkles as a function of the applied compressive and tensile stresses. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:616 / 624
页数:9
相关论文
共 50 条
  • [1] NEW MULTI-SCALE MODELS ON MESOSCALES AND SQUALL LINES
    Majda, Andrew J.
    Xing, Yulong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) : 113 - 144
  • [2] A multi-scale model for polymer membranes
    Broadbent, R. J.
    Spencer, J. S.
    Livingston, A. G.
    Mostofi, A. A.
    Sutton, A. P.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 489 - 490
  • [3] Multi-scale models electroporation
    Dermol-Černe, Janja
    Miklavčič, Damijan
    Elektrotehniski Vestnik/Electrotechnical Review, 2019, 86 (04): : 161 - 167
  • [4] Multi-scale models electroporation
    Dermol-Cerne, Janja
    Miklavcic, Damijan
    ELEKTROTEHNISKI VESTNIK, 2019, 86 (04): : 161 - 167
  • [5] Nonlinear multi-scale homogenization with different structural models at different scales
    Edmans, B. D.
    Alfano, G.
    Bahai, H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 94 (04) : 355 - 373
  • [6] Measuring multi-scale tortuosity in polymer membranes
    Madsen, Louis
    Korovich, Andrew
    Thieu, Lam
    Zhu, Liang
    Chang, Kevin
    Geise, Geoffrey
    Hickner, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] Nonlinear Model Predictive Control based on multi-scale models: is it worth the complexity?
    Bhonsale, Satyajeet
    Mores, Wannes
    Van Impe, Jan
    IFAC PAPERSONLINE, 2022, 55 (23): : 129 - 134
  • [8] Multi-scale Models of Gastrointestinal Electrophysiology
    Buist, M. L.
    Corrias, A.
    Poh, Y. C.
    13TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, VOLS 1-3, 2009, 23 (1-3): : 1809 - 1813
  • [9] Multi-scale models of lung fibrosis
    Leonard-Duke, Julie
    Evans, Stephanie
    Hannan, Riley T.
    Barker, Thomas H.
    Bates, Jason H. T.
    Bonham, Catherine A.
    Moore, Bethany B.
    Kirschner, Denise E.
    Peirce, Shayn M.
    MATRIX BIOLOGY, 2020, 91-92 : 35 - 50
  • [10] Detection and Localization with Multi-scale Models
    Ohn-Bar, Eshed
    Trivedi, Mohan M.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1382 - 1387