Motion Classification Using Dynamic Time Warping

被引:0
|
作者
Adistambha, Kevin [1 ]
Ritz, Christian H. [1 ]
Burnett, Ian S. [2 ]
机构
[1] Univ Wollongong, Sch Elect & Telecommun Engn, Whisper Labs TITR, Wollongong, NSW 2522, Australia
[2] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic generation of metadata is an important component of multimedia search-by-content systems as it both avoids the need for manual annotation as well as minimising subjective descriptions and human errors. This paper explores the automatic attachment of basic descriptions (or 'Tags') to human motion held in a motion-capture database on the basis of a Dynamic Time Warping (DTW) approach. The captured motion is held in the Acclaim ASF/AMC format commonly used in game and movie motion capture work and the approach allows for the comparison and classification of motion from different subjects. The work analyses the bone rotations important to a small set of movements and results indicate that only a small set of examples is required to perform reliable motion classification.
引用
收藏
页码:626 / +
页数:3
相关论文
共 50 条
  • [1] Mammogram classification using dynamic time warping
    Syed Jamal Safdar Gardezi
    Ibrahima Faye
    Jose M. Sanchez Bornot
    Nidal Kamel
    Mohammad Hussain
    Multimedia Tools and Applications, 2018, 77 : 3941 - 3962
  • [2] Chromosome classification using dynamic time warping
    Legrand, Benoit
    Chang, C. S.
    Ong, S. H.
    Neo, Soek-Ying
    Palanisamy, Nallasivarn
    PATTERN RECOGNITION LETTERS, 2008, 29 (03) : 215 - 222
  • [3] Mammogram classification using dynamic time warping
    Gardezi, Syed Jamal Safdar
    Faye, Ibrahima
    Bornot, Jose M. Sanchez
    Kamel, Nidal
    Hussain, Mohammad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 3941 - 3962
  • [4] Dynamic time warping in classification and selection of motion capture data
    Adam Switonski
    Henryk Josinski
    Konrad Wojciechowski
    Multidimensional Systems and Signal Processing, 2019, 30 : 1437 - 1468
  • [5] Dynamic time warping in classification and selection of motion capture data
    Switonski, Adam
    Josinski, Henryk
    Wojciechowski, Konrad
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (03) : 1437 - 1468
  • [6] ECG frame classification using dynamic time warping
    Huang, B
    Kinsner, W
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1105 - 1110
  • [7] Classification of surgical processes using dynamic time warping
    Forestier, Germain
    Lalys, Florent
    Riffaud, Laurent
    Trelhu, Brivael
    Jannin, Pierre
    JOURNAL OF BIOMEDICAL INFORMATICS, 2012, 45 (02) : 255 - 264
  • [8] Classification of genomic signals using dynamic time warping
    Skutkova, Helena
    Vitek, Martin
    Babula, Petr
    Kizek, Rene
    Provaznik, Ivo
    BMC BIOINFORMATICS, 2013, 14
  • [9] Classification of genomic signals using dynamic time warping
    Helena Skutkova
    Martin Vitek
    Petr Babula
    Rene Kizek
    Ivo Provaznik
    BMC Bioinformatics, 14
  • [10] Human motion recognition using isomap and dynamic time warping
    Blackburn, Jaron
    Ribeiro, Eraldo
    HUMAN MOTION - UNDERSTANDING, MODELING, CAPTURE AND ANIMATION, PROCEEDINGS, 2007, 4814 : 285 - +