Classifications of Neurodegenerative Disorders Using a Multiplex Blood Biomarkers-Based Machine Learning Model

被引:30
|
作者
Lin, Chin-Hsien [1 ]
Chiu, Shu-, I [2 ,3 ]
Chen, Ta-Fu [1 ]
Jang, Jyh-Shing Roger [2 ]
Chiu, Ming-Jang [1 ,4 ,5 ,6 ]
机构
[1] Natl Taiwan Univ, Natl Taiwan Univ Hosp, Coll Med, Dept Neurol, Taipei 100225, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[3] Natl Chengchi Univ, Dept Comp Sci, Taipei 11605, Taiwan
[4] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Grad Inst Brain & Mind Sci, Taipei 100233, Taiwan
[6] Natl Taiwan Univ, Grad Inst Psychol, Taipei 10617, Taiwan
关键词
Alzheimer's disease; Parkinson's disease; frontotemporal dementia; neurodegenerative disorders; biomarkers; deep learning model; linear discriminant analysis; classification; multivariate imputation by chained equations; FRONTOTEMPORAL LOBAR DEGENERATION; PARKINSONS-DISEASE; ALZHEIMERS-DISEASE; AMYLOID-BETA; ALPHA-SYNUCLEIN; DIAGNOSTIC-CRITERIA; CLINICAL-DIAGNOSIS; PLASMA BIOMARKERS; TASK-FORCE; IMPAIRMENT;
D O I
10.3390/ijms21186914
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Easily accessible biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and related neurodegenerative disorders are urgently needed in an aging society to assist early-stage diagnoses. In this study, we aimed to develop machine learning algorithms using the multiplex blood-based biomarkers to identify patients with different neurodegenerative diseases. Plasma samples (n= 377) were obtained from healthy controls, patients with AD spectrum (including mild cognitive impairment (MCI)), PD spectrum with variable cognitive severity (including PD with dementia (PDD)), and FTD. We measured plasma levels of amyloid-beta 42 (A beta 42), A beta 40, total Tau, p-Tau181, and alpha-synuclein using an immunomagnetic reduction-based immunoassay. We observed increased levels of all biomarkers except A beta 40 in the AD group when compared to the MCI and controls. The plasma alpha-synuclein levels increased in PDD when compared to PD with normal cognition. We applied machine learning-based frameworks, including a linear discriminant analysis (LDA), for feature extraction and several classifiers, using features from these blood-based biomarkers to classify these neurodegenerative disorders. We found that the random forest (RF) was the best classifier to separate different dementia syndromes. Using RF, the established LDA model had an average accuracy of 76% when classifying AD, PD spectrum, and FTD. Moreover, we found 83% and 63% accuracies when differentiating the individual disease severity of subgroups in the AD and PD spectrum, respectively. The developed LDA model with the RF classifier can assist clinicians in distinguishing variable neurodegenerative disorders.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Predicting Neurodegenerative Diseases Using a Novel Blood Biomarkers-based Model by Machine Learning
    Chiu, Shu-I
    Chen, Ta-Fu
    Lin, Chin-Hsien
    Jang, Jyh-Shing Roger
    Lim, Wee Shin
    Chiu, Ming-Jang
    2019 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2019,
  • [2] RETRACTED: DNA Methylation Biomarkers-Based Human Age Prediction Using Machine Learning (Retracted Article)
    Zaguia, Atef
    Pandey, Deepak
    Painuly, Sandeep
    Pal, Saurabh Kumar
    Garg, Vivek Kumar
    Goel, Neelam
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] Diagnosis of Asthma Based on Routine Blood Biomarkers Using Machine Learning
    Zhan, Jun
    Chen, Wen
    Cheng, Longsheng
    Wang, Qiong
    Han, Feifei
    Cui, Yubao
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020
  • [4] An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders
    Nicholas J. Ashton
    Abdul Hye
    Anto P. Rajkumar
    Antoine Leuzy
    Stuart Snowden
    Marc Suárez-Calvet
    Thomas K. Karikari
    Michael Schöll
    Renaud La Joie
    Gil D. Rabinovici
    Kina Höglund
    Clive Ballard
    Tibor Hortobágyi
    Per Svenningsson
    Kaj Blennow
    Henrik Zetterberg
    Dag Aarsland
    Nature Reviews Neurology, 2020, 16 : 265 - 284
  • [5] An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders
    Ashton, Nicholas J.
    Hye, Abdul
    Rajkumar, Anto P.
    Leuzy, Antoine
    Snowden, Stuart
    Suarez-Calvet, Marc
    Karikari, Thomas K.
    Scholl, Michael
    La Joie, Renaud
    Rabinovici, Gil D.
    Hoglund, Kina
    Ballard, Clive
    Hortobagyi, Tibor
    Svenningsson, Per
    Blennow, Kaj
    Zetterberg, Henrik
    Aarsland, Dag
    NATURE REVIEWS NEUROLOGY, 2020, 16 (05) : 265 - 284
  • [6] A Machine Learning Based Fall Detection for Elderly People with Neurodegenerative Disorders
    Nahar, Nazmun
    Hossain, Mohammad Shahadat
    Andersson, Karl
    BRAIN INFORMATICS, BI 2020, 2020, 12241 : 194 - 203
  • [7] Biomarkers of depressive disorders: A multiplex analysis of blood serum
    Boiko, A. S.
    Losenkov, I. S.
    Levchuk, L. A.
    Simutkin, G. G.
    Bokhan, N. A.
    Bosker, F. J.
    Wilffert, B.
    Loonen, A. J. M.
    Ivanova, S. A.
    EUROPEAN PSYCHIATRY, 2017, 41 : S524 - S524
  • [8] Blood Biomarkers Predict Cardiac Workload Using Machine Learning
    Shou, Lan
    Huang, Wendy Wenyu
    Barszczyk, Andrew
    Wu, Si Jia
    Han, Helen
    Waese-Perlman, Alex
    Chen, Lulu
    Wei, Jing
    Luo, Hong
    Lee, Kang
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [9] Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders
    Abdi, Fadi
    Quinn, Joseph F.
    Jankovic, Joseph
    McIntosh, Martin
    Leverenz, James B.
    Peskind, Elaine
    Nixon, Randy
    Nutt, John
    Chung, Katherine
    Zabetian, Cyrus
    Samii, Ali
    Lin, Melanie
    Hattan, Stephen
    Pan, Catherine
    Wang, Yan
    Jin, ghua Jin
    Zhu, David
    Li, G. Jane
    Liu, Yan
    Waichunas, Dana
    Montine, Thomas J.
    Zhang, Jing
    JOURNAL OF ALZHEIMERS DISEASE, 2006, 9 (03) : 293 - 348
  • [10] Multiple radiomic biomarkers-based machine learning model to predict responses of surufatinib-treated advanced neuroendocrine tumor (NET): A multicenter exploratory study
    Xu, J.
    Zhao, C.
    Zhou, J.
    Luo, X.
    Fan, S.
    Su, W.
    Nie, K.
    Lin, C.
    Yang, J.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S957 - S958