Multifunctional, flexible electronic systems based on engineered nanostructured materials

被引:36
|
作者
Ko, Hyunhyub [1 ,2 ,3 ,4 ]
Kapadia, Rehan [1 ,2 ,3 ]
Takei, Kuniharu [1 ,2 ,3 ]
Takahashi, Toshitake [1 ,2 ,3 ]
Zhang, Xiaobo [1 ,2 ,3 ]
Javey, Ali [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] UNIST, KIER UNIST Adv Ctr Energy, Sch Nanobiosci & Chem Engn, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; SUPERHYDROPHOBIC SURFACES; ORGANIC ELECTRONICS; SOLAR-CELLS; N-ISOPROPYLACRYLAMIDE; NANOWIRE ELECTRONICS; CHEMICAL CONNECTORS; ELASTIC CONDUCTORS; ARTIFICIAL SKIN;
D O I
10.1088/0957-4484/23/34/344001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Cucurbituril-based supramolecular engineered nanostructured materials
    Gurbuz, Sinem
    Idris, Muazzam
    Tuncel, Donus
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2015, 13 (02) : 330 - 347
  • [2] Engineered proteins as multifunctional materials
    Maneesh K. Gupta
    Drew T. Wagner
    Michael C. Jewett
    MRS Bulletin, 2020, 45 : 999 - 1004
  • [3] Engineered proteins as multifunctional materials
    Gupta, Maneesh K.
    Wagner, Drew T.
    Jewett, Michael C.
    MRS BULLETIN, 2020, 45 (12) : 999 - 1004
  • [4] Multifunctional materials based on nanostructured partially stabilized zirconia crystals
    V. V. Osiko
    E. E. Lomonova
    Herald of the Russian Academy of Sciences, 2012, 82 : 373 - 382
  • [5] Multifunctional materials based on nanostructured partially stabilized zirconia crystals
    Osiko, V. V.
    Lomonova, E. E.
    HERALD OF THE RUSSIAN ACADEMY OF SCIENCES, 2012, 82 (05) : 373 - 380
  • [6] Engineered nanostructured materials: benefits and risks
    Vinod Kumar Yata
    Environmental Chemistry Letters, 2019, 17 : 1523 - 1527
  • [7] Engineered Nanostructured Materials for Ofloxacin Delivery
    Nuti, Silvia
    Fernandez-Lodeiro, Javier
    Del Secco, Benedetta
    Rampazzo, Enrico
    Rodriguez-Gonzalez, Benito
    Capelo, Jose L.
    Silva, Vanessa
    Igrejas, Gilberto
    Poeta, Patricia
    Torres, Carmen
    Zaccheroni, Nelsi
    Prodi, Luca
    Oliveira, Elisabete
    Lodeiro, Carlos
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [8] Engineered nanostructured materials: benefits and risks
    Yata, Vinod Kumar
    ENVIRONMENTAL CHEMISTRY LETTERS, 2019, 17 (04) : 1523 - 1527
  • [9] MULTIFUNCTIONAL MATERIALS Dry but flexible magnetic materials
    Faivre, Damien
    NATURE NANOTECHNOLOGY, 2010, 5 (08) : 562 - 563
  • [10] Personalized energy systems based on nanostructured materials
    Kovalenko, A. N.
    Tugova, E. A.
    Popkov, V., I
    Karpov, O. N.
    Klyndyuk, A., I
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2021, 12 (03): : 368 - 403