Change Point Detection with Machine Learning for Rapid Ransomware Detection

被引:0
|
作者
Melaragno, Anthony [1 ]
Casey, William [1 ]
机构
[1] US Naval Acad, Cyber Sci, Annapolis, MD 21402 USA
关键词
D O I
10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ransomware has been an ongoing issue since the early 1990s. In recent times ransomware has spread from traditional computational resources to cyber-physical systems and industrial controls. We devised a series of experiments in which virtual instances are infected with ransomware. We instrumented the instances then collected resource utilization data across a variety of metrics (CPU, Memory, Disk Utility. fan speed, etc.). We design a change point detection and learning method for identifying ransomware execution. Finally, we evaluate and demonstrate its ability to detect ransomware efficiently in a rapid manner when trained on a minimal set of samples to try to preserve data. Our results represent a step forward for defense, and we conclude with further remarks for a critical path forward.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 50 条
  • [1] Machine Learning Algorithms and Frameworks in Ransomware Detection
    Smith, Daryle
    Khorsandroo, Sajad
    Roy, Kaushik
    IEEE ACCESS, 2022, 10 : 117597 - 117610
  • [2] Ransomware detection using machine learning algorithms
    Bae, Seong Il
    Lee, Gyu Bin
    Im, Eul Gyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18):
  • [3] Ransomware Classification and Detection With Machine Learning Algorithms
    Masum, Mohammad
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    Adnan, Muhaiminul Islam
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 316 - 322
  • [4] Authentic Learning of Machine Learning to Ransomware Detection and Prevention
    Faruk, Md Jobair Hossain
    Masum, Mohammad
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 442 - 443
  • [5] Ransomware Detection Using Machine Learning: A Survey
    Alraizza, Amjad
    Algarni, Abdulmohsen
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (03)
  • [6] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [7] Proposed Ransomware Detection Model Based on Machine Learning
    Gonza, Karen
    Torres, Juan
    Curioso, Mars
    Ticona, Wilfredo
    CYBERNETICS AND CONTROL THEORY IN SYSTEMS, VOL 2, CSOC 2024, 2024, 1119 : 287 - 299
  • [8] Ransomware Detection in Executable Files Using Machine Learning
    Ganta, Venkata Gopi
    Harish, G. Venkata
    Kumar, V. Prem
    Rao, G. Rama Koteswar
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 282 - 286
  • [9] Ransomware Detection using Machine and Deep Learning Approaches
    Alsaidi, Ramadhan A. M.
    Yafooz, Wael M. S.
    Alolofi, Hashem
    Taufiq-Hail, Ghilan Al-Madhagy
    Emara, Abdel-Hamid M.
    Abdel-Wahab, Ahmed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 112 - 119
  • [10] Machine Learning-Based Detection of Ransomware Using SDN
    Cusack, Greg
    Michel, Oliver
    Keller, Eric
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION (SDN-NFVSEC'18), 2018, : 1 - 6