On bipartite and multipartite clique problems

被引:86
作者
Dawande, M [1 ]
Keskinocak, P
Swaminathan, JM
Tayur, S
机构
[1] Univ Texas Dallas, Dallas, TX 75080 USA
[2] IBM Corp, TJ Watson Ctr, Yorktown Hts, NY 10598 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[4] Univ N Carolina, Kenan Flagler Business Sch, Chapel Hill, NC 27599 USA
[5] Carnegie Mellon Univ, GSIA, Pittsburgh, PA 15213 USA
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2001年 / 41卷 / 02期
关键词
bipartite graph; multipartite graph; clique; complexity;
D O I
10.1006/jagm.2001.1199
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce the maximum edge biclique problem in bipartite graphs and the edge/node weighted multipartite clique problem in multipartite graphs. Our motivation for studying these problems came from abstractions of real manufacturing problems in the computer industry and from formal concept analysis. We show that the weighted version and four variants of the unweighted version of the biclique problem are NP-complete. For random bipartite graphs, we show that the size of the maximum balanced biclique is considerably smaller than the size of the maximum edge cardinality biclique, thus highlighting the difference between the two problems. For multipartite graphs, we consider three versions each for the edge and node weighted problems which differ in the structure of the multipartite clique (MPC) required. We show that all the edge weighted versions are NP-complete in general. We also provide a special case in which edge weighted versions arc polynomially solvable. (C) 2001 Elsevier Science.
引用
收藏
页码:388 / 403
页数:16
相关论文
共 11 条
[1]  
Ahuja R.K., 1993, NETWORK FLOWS THEORY
[2]  
ALON N, 1992, PROBABILISTIC METHOD
[3]  
GANTER B, COMMUNICATION
[4]  
Ganter B., 1996, Formale Begriffsanalyse-Mathematische Grundlagen
[5]  
Garey M. S., 1979, COMPUTERS INTRACTIBI
[6]  
Hardy G. H., 1954, INTRO THEORY NUMBERS
[7]   Approximating clique and biclique problems [J].
Hochbaum, DS .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1998, 29 (01) :174-200
[8]  
KROLAKSCHWERDT S, 1996, ANN C GERM CLASS SOC
[9]  
Nemhauser GeorgeL., 1988, Integer Programming and Combinatorial Optimization
[10]  
PEETERS R, 2000, MAXIMUM EDGE BICLIQU