共 50 条
Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering
被引:208
|作者:
Temenoff, JS
Athanasiou, KA
LeBaron, RG
Mikos, AG
机构:
[1] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
[2] Univ Texas, Div Life Sci, San Antonio, TX 78249 USA
来源:
关键词:
cartilage tissue engineering;
poly(ethylene glycol) (PEG);
biphasic hydrogel;
in situ polymerizable hydrogel;
hydrogel material properties;
D O I:
10.1002/jbm.1259
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
This study was designed to determine the effect of changes in poly(ethylene glycol) (PEG) molecular weight on swelling and mechanical properties of hydrogels made from a novel polymer, oligo(poly(ethylene glycol) fumarate) (OPF), recently developed in our laboratory. Properties of hydrogels made from OPF with initial PEG molecular weights of 860, 3900, and 9300 were examined. The PEG 3900 formulation had a tensile modulus of 23.1 +/- 12.4 kPa and percent elongation at fracture of 53.2 +/- 13.7%; the PEG 9300 formulation had similar tensile properties (modulus: 16.5 +/-4.6 kPa, elongation: 76.0 +/- 26.4%). However, the PEG 860 gels had a significantly higher modulus (89.5 +/- 50.7 kPa) and a significantly smaller percent elongation at fracture (30.1 +/-6.4%), when compared with other formulations. Additionally, there were significant differences in percent swelling between each of the formulations. Molecular weight between crosslinks (M-c) and mesh size were calculated for each OPF formulation. M-c increased from 2010 +/- 116 g/mol with PEG 860 to 6250 +/- 280 g/mol with PEG 9300. Mesh size calculations showed a similar trend (76 +/-2 Angstrom for PEG 860 to 160 +/-6 Angstrom for PEG 9300). It was also found that these hydrogels could be laminated if a second layer was added before the first had completely crosslinked. Mechanical testing of these laminated gels revealed that the presence of an interfacial area did not significantly alter their tensile properties. These results suggest that the material properties of OPF-based hydrogels can be altered by changing the molecular weight of PEG used in synthesis and that multilayered OPF hydrogel constructs can be produced, with each layer having distinct mechanical properties. (C) 2001 John Wiley & Sons, Inc. J Biomed Mater Res 59: 429-437, 2002.
引用
收藏
页码:429 / 437
页数:9
相关论文