Finite rank kernels for multi-task learning

被引:8
|
作者
Liu, Jianqiang [1 ]
Micchelli, Charles A. [2 ,3 ]
Wang, Rui [4 ]
Xu, Yuesheng [5 ,6 ]
机构
[1] Ningxia Univ, Dept Math & Comp Sci, Yinchuan 750021, Peoples R China
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[5] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[6] Sun Yat Sen Univ, Guangdong Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Multi-task polynomial kernels; Characteristic operator; Weierstrass approximation theorem; Continuous kernel extension; VECTOR;
D O I
10.1007/s10444-011-9244-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the importance of kernel-based methods for multi-task learning, we provide here a complete characterization of multi-task finite rank kernels in terms of the positivity of what we call its associated characteristic operator. Consequently, we are led to establishing that every continuous multi-task kernel, defined on a cube in an Euclidean space, not only can be uniformly approximated by multi-task polynomial kernels, but also can be extended as a multi-task kernel to all of the Euclidean space. Finally, we discuss the interpolation of multi-task kernels by multi-task finite rank kernels.
引用
收藏
页码:427 / 439
页数:13
相关论文
共 50 条
  • [1] Finite rank kernels for multi-task learning
    Jianqiang Liu
    Charles A. Micchelli
    Rui Wang
    Yuesheng Xu
    Advances in Computational Mathematics, 2013, 38 : 427 - 439
  • [2] Multi-task and Lifelong Learning of Kernels
    Pentina, Anastasia
    Ben-David, Shai
    ALGORITHMIC LEARNING THEORY, ALT 2015, 2015, 9355 : 194 - 208
  • [3] Learning output kernels for multi-task problems
    Dinuzzo, Francesco
    NEUROCOMPUTING, 2013, 118 : 119 - 126
  • [4] Multi-task learning to rank for web search
    Chang, Yi
    Bai, Jing
    Zhou, Ke
    Xue, Gui-Rong
    Zha, Hongyuan
    Zheng, Zhaohui
    PATTERN RECOGNITION LETTERS, 2012, 33 (02) : 173 - 181
  • [5] LEARNING VOCAL TRACT VARIABLES WITH MULTI-TASK KERNELS
    Kadri, Hachem
    Duflos, Emmanuel
    Preux, Philippe
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2200 - 2203
  • [6] A Kernel Approach to Multi-Task Learning with Task-Specific Kernels
    武威
    李航
    胡云华
    金榕
    Journal of Computer Science & Technology, 2012, 27 (06) : 1289 - 1301
  • [7] A Kernel Approach to Multi-Task Learning with Task-Specific Kernels
    Wei Wu
    Hang Li
    Yun-Hua Hu
    Rong Jin
    Journal of Computer Science and Technology, 2012, 27 : 1289 - 1301
  • [8] A Kernel Approach to Multi-Task Learning with Task-Specific Kernels
    Wu, Wei
    Li, Hang
    Hu, Yun-Hua
    Jin, Rong
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (06) : 1289 - 1301
  • [9] Universal multi-task Kernels
    Caponnetto, Andrea
    Micchelli, Charles A.
    Pontil, Massimiliano
    Ying, Yiming
    Journal of Machine Learning Research, 2008, 9 : 1615 - 1646
  • [10] Universal multi-task kernels
    Caponnetto, Andrea
    Micchelli, Charles A.
    Pontil, Massimiliano
    Ying, Yiming
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 1615 - 1646