Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment

被引:251
|
作者
Ma, Baiwen [1 ]
Xue, Wenjing [1 ,2 ]
Ding, Yanyan [1 ,3 ]
Hu, Chengzhi [1 ,3 ]
Liu, Huijuan [4 ,5 ]
Qu, Jiuhui [1 ,3 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Shandong, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Res Ctr Water Qual & Ecol, Beijing 100084, Peoples R China
来源
基金
国家重点研发计划;
关键词
Microplastics; Removal; FeCl3 center dot 6H(2)O; Coagulation; Ultrafiltration; NATURAL ORGANIC-MATTER; WASTE-WATER; MEMBRANE FILTRATION; MARINE-ENVIRONMENT; SURFACE-WATER; ULTRAFILTRATION; ALUMINUM; RIVER; IDENTIFICATION; ACCUMULATION;
D O I
10.1016/j.jes.2018.10.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microplastics have caused great concern worldwide recently due to their ubiquitous presence within the marine environment. Up to now, most attention has been paid to their sources, distributions, measurement methods, and especially their eco-toxicological effects. With microplastics being increasingly detected in freshwater, it is urgently necessary to evaluate their behaviors during coagulation and ultrafiltration (UF) processes. Herein, the removal behavior of polyethylene (PE), which is easily suspended in water and is the main component of microplastics, was investigated with commonly used Fe-based salts. Results showed that although higher removal efficiency was induced for smaller PE particles, low PE removal efficiency (below 15%) was observed using the traditional coagulation process, and was little influenced by water characteristics. In comparison to solution pH, PAM addition played a more important role in increasing the removal efficiency, especially anionic PAM at high dosage (with efficiency up to 90.9%). The main reason was ascribed to the dense floc formation and high adsorption ability because of the positively charged Fe-based flocs under neutral conditions. For ultrafiltration, although PE particles could be completely rejected, slight membrane fouling was caused owing to their large particle size. The membrane flux decreased after coagulation; however, the membrane fouling was less severe than that induced by flocs alone due to the heterogeneous nature of the cake layer caused by PE, even at high dosages of Fe-based salts. Based on the behavior exhibited during coagulation and ultrafiltration, we believe these findings will have potential application in drinking water treatment. (c) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 50 条
  • [1] Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment
    Baiwen Ma
    Wenjing Xue
    Yanyan Ding
    Chengzhi Hu
    Huijuan Liu
    Jiuhui Qu
    Journal of Environmental Sciences, 2019, 78 (04) : 267 - 275
  • [2] Mass Concentration and Removal Characteristics of Microplastics and Nanoplastics in a Drinking Water Treatment Plant
    Xu, Yanghui
    Ou, Qin
    Wang, Xintu
    van der Hoek, Jan Peter
    Liu, Gang
    ACS ES&T WATER, 2024, 4 (08): : 3348 - 3358
  • [3] Enhancing the removal efficiency of microplastics in drinking water treatment
    Tang, Shuyuan
    Gao, Ling
    Zhao, Tianrui
    Tian, Aisi
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 57
  • [4] Optimization of polypropylene microplastics removal using conventional coagulants in drinking water treatment plants via response surface methodology
    Danial Adib
    Roya Mafigholami
    Hossein Tabeshkia
    Tony R. Walker
    Journal of Environmental Health Science and Engineering, 2022, 20 : 565 - 577
  • [5] Optimization of polypropylene microplastics removal using conventional coagulants in drinking water treatment plants via response surface methodology
    Adib, Danial
    Mafigholami, Roya
    Tabeshkia, Hossein
    Walker, Tony R.
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2022, 20 (01) : 565 - 577
  • [6] The coagulation behavior and removal efficiency of microplastics in drinking water treatment
    Tang, Shuyuan
    Gao, Ling
    Tian, Aisi
    Zhao, Tianrui
    Zou, Donglei
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 53
  • [7] Conventional and biological treatment for the removal of microplastics from drinking water
    Cherniak, Samuel L.
    Almuhtaram, Husein
    McKie, Michael J.
    Hermabessiere, Ludovic
    Yuan, Chuqiao
    Rochman, Chelsea M.
    Andrews, Robert C.
    CHEMOSPHERE, 2022, 288
  • [8] Pollutant removal by conventional drinking water treatment technique and optimal selection of coagulants
    Shi, Ming-Yan
    Cui, Fu-Yi
    Zhang, Hai-Long
    Sun, Shou-Zhi
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2002, 34 (06): : 762 - 766
  • [9] Comparison of metals extractability from Al/Fe-based drinking water treatment residuals
    Wang, Changhui
    Bai, Leilei
    Pei, Yuansheng
    Wendling, Laura A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (23) : 13528 - 13538
  • [10] Comparison of metals extractability from Al/Fe-based drinking water treatment residuals
    Changhui Wang
    Leilei Bai
    Yuansheng Pei
    Laura A. Wendling
    Environmental Science and Pollution Research, 2014, 21 : 13528 - 13538