Dynamics of the Abrikosov Vortices on Cylindrical Microtubes

被引:5
|
作者
Rezaev, R. O. [1 ,2 ,3 ]
Levchenko, E. A. [1 ,2 ]
Schmidt, O. G. [4 ,5 ]
Fomin, V. M. [4 ]
机构
[1] Natl Res Tomsk Polytech Univ, Tomsk, Russia
[2] Natl Res Tomsk State Univ, Tomsk, Russia
[3] Natl Res Nucl Univ, Moscow, Russia
[4] Inst Integrat Nanosci IFW, Dresden, Germany
[5] Tech Univ Chemnitz, Mat Syst Nanoelect, Chemnitz, Germany
关键词
vortex dynamics; superconducting cylindrical tubes; bifurcation;
D O I
10.1007/s11182-015-0542-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the special features at nano- and microscales of the vortex dynamics on superconducting cylindrical Nb tubes produced by the roll-up (self-rolling) technique. A transport current enters the tube through electrodes placed on both sides of a cut (in the paraxial direction) of the tube. The system is in the magnetic field perpendicular to the tube axis. The vortex dynamics is described by means of characteristic times: time (Delta t(1)) needed for a vortex to move from one edge of the tube to another and time (Delta t(2)) between two consecutive vortex nucleation events at one edge of the tube. A range of magnetic field values is analyzed where Delta t(1) as a function of the magnetic field has a highly nonlinear and non-monotonic behavior. For certain values of the magnetic field, two different trajectories are possible for a moving vortex, i.e., a bifurcation phenomenon occurs. We explain the reason of this bifurcation.
引用
收藏
页码:623 / 628
页数:6
相关论文
共 50 条
  • [1] Dynamics of the Abrikosov Vortices on Cylindrical Microtubes
    R. O. Rezaev
    E. A. Levchenko
    O. G. Schmidt
    V. M. Fomin
    Russian Physics Journal, 2015, 58 : 623 - 628
  • [2] Statics and dynamics of Abrikosov vortices and of related solitons
    Burzlaff, J
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 55 - 61
  • [3] Irreversible dynamics of Abrikosov vortices in type-two superconductors
    Pace, S
    Filatrella, G
    Grimaldi, G
    Nigro, A
    PHYSICS LETTERS A, 2004, 329 (4-5) : 379 - 384
  • [4] On the dynamics of nonreducible cylindrical vortices
    Coronel, Daniel
    Navas, Andres
    Ponce, Mario
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 789 - 808
  • [5] Abrikosov vortices in SF bilayers
    Golubov, A. A.
    Kupriyanov, M. Yu.
    Khapaev, M. M.
    JETP LETTERS, 2016, 104 (12) : 847 - 851
  • [6] Abrikosov-Josephson vortices
    Aliev, Yu.M.
    Alfimov, G.L.
    Ovchinnikov, K.N.
    Silin, V.P.
    Uryupin, S.A.
    Fizika Nizkikh Temperatur (Kiev), 1996, 22 (06):
  • [7] Abrikosov vortices in SF bilayers
    A. A. Golubov
    M. Yu. Kupriyanov
    M. M. Khapaev
    JETP Letters, 2016, 104 : 847 - 851
  • [8] ABRIKOSOV VORTICES IN THE CRITICAL COUPLING
    WANG, S
    YANG, YS
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) : 1125 - 1140
  • [9] Abrikosov-Josephson vortices
    Aliev, YM
    Alfimov, GL
    Ovchinnikov, KN
    Silin, VP
    Uryupin, SA
    FIZIKA NIZKIKH TEMPERATUR, 1996, 22 (06): : 626 - 628
  • [10] Tunable Magnetic Labyrinth for Abrikosov Vortices
    V. K. Vlasko-Vlasov
    R. Divan
    D. Rosenmann
    A. Leishman
    U. Welp
    S. G. E. te Velthuis
    W. K. Kwok
    Journal of Superconductivity and Novel Magnetism, 2022, 35 : 1555 - 1568