Online Sparse Matrix Gaussian Process Regression and Vision Applications

被引:0
|
作者
Ranganathan, Ananth [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Honda Res Inst, Mountain View, CA 94041 USA
[2] Univ Calif, Merced, CA 95344 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new Gaussian Process inference algorithm. called Online Sparse Matrix Gaussian Processes (OSMGP), and demonstrate its merits with a few vision applications. The OSMGP is based on the observation that for kernels with local support, the Gram matrix is typically sparse. Maintaining and updating the sparse Cholesky factor of the Grain matrix can be done efficiently using Givens rotations. This leads to an exact, online algorithm whose update time scales linearly with the size of the Grain matrix. Further, if approximate updates are permissible, the Cholesky factor can be maintained at a constant size using hyperbolic rotations to remove certain rows and columns corresponding to discarded training examples. We demonstrate that. using these matrix downdates, online hyperparameter estimation can be included without affecting the linear runtime complexity of the algorithm. The OSMGP algorithm is applied to head-pose estimation and visual tracking problems. Experimental results demonstrate that the proposed method is accurate. efficient and generalizes well using online learning.
引用
收藏
页码:468 / +
页数:3
相关论文
共 50 条
  • [1] Online Sparse Gaussian Process Regression and Its Applications
    Ranganathan, Ananth
    Yang, Ming-Hsuan
    Ho, Jeffrey
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (02) : 391 - 404
  • [2] Online Sparse Gaussian Process Regression for Trajectory Modeling
    Tiger, Mattias
    Heintz, Fredrik
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 782 - 791
  • [3] Online Sparse Multi-Output Gaussian Process Regression and Learning
    Yang, Le
    Wang, Ke
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (02): : 258 - 272
  • [4] Online sparse Gaussian process regression using FITC and PITC approximations
    Bijl, Hildo
    van Wingerden, Jan-Willem
    Schon, Thomas B.
    Verhaegen, Michel
    IFAC PAPERSONLINE, 2015, 48 (28): : 703 - 708
  • [5] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    Journal of Machine Learning Research, 2022, 23
  • [6] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [7] Sparse Spectrum Gaussian Process Regression
    Lazaro-Gredilla, Miguel
    Quinonero-Candela, Joaquin
    Rasmussen, Carl Edward
    Figueiras-Vidal, Anibal R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1865 - 1881
  • [8] Sparse greedy Gaussian process regression
    Smola, AJ
    Bartlett, P
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 619 - 625
  • [9] Online Battery State-of-Charge Estimation Based on Sparse Gaussian Process Regression
    Ozcan, Gozde
    Pajovic, Milutin
    Sahinoglu, Zafer
    Wang, Yebin
    Orlik, Philip V.
    Wada, Toshihiro
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [10] Efficient Optimization for Sparse Gaussian Process Regression
    Cao, Yanshuai
    Brubaker, Marcus A.
    Fleet, David J.
    Hertzmann, Aaron
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (12) : 2415 - 2427