Online Hand Gesture Recognition Using Surface Electromyography Based on Flexible Neural Trees

被引:0
|
作者
Wang, QingHua [1 ]
Guo, YiNa [1 ]
Abraham, Ajith [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Taiyuan 030024, Shanxi, Peoples R China
[2] Sci Net Innov & Res Excel, Machine Intellig Res Labs MIR Labs, Auburn, AL 98071 USA
关键词
Surface Electromyography (sEMG); Flexible Neural Trees (FNT); Pattern recognition; Particle swarm optimization (PSO); CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Normal hand gesture recognition methods using surface Electromyography (sEMG) signals require designers to use digital signal processing hardware or ensemble methods as tools to solve real time hand gesture classification. These ways are easy to result in complicated computation models, inconvenience of circuit connection and lower online recognition rate. Therefore it is imperative to have good methods which can avoid the problems mentioned above as more as possible. An online hand gesture recognition model by using Flexible Neural Trees (FNT) and based on sEMG signals is proposed in this paper. The sEMG is easy to record electrical activity of superficial muscles from the skin surface which has applied in many fields of treatment and rehabilitation. The FNT model can be created using the existing or modified tree- structure- based approaches and the parameters are optimized by the PSO algorithm. The results indicate that the model is able to classify six different hand gestures up to 97.46% accuracy in real time.
引用
收藏
页码:245 / +
页数:3
相关论文
共 50 条
  • [1] Flexible Neural Trees for Online Hand Gesture Recognition using Surface Electromyography
    Guo, Yina
    Wang, Qinghua
    Huang, Shuhua
    Abraham, Ajith
    JOURNAL OF COMPUTERS, 2012, 7 (05) : 1099 - 1103
  • [2] Hand Gesture Recognition using Flexible Neural Trees and Surface Electromyography
    Guo, Yina
    Huang, Shuhua
    Zhuo, Dongfeng
    Abraham, Ajith
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 31 - 37
  • [3] Hand gesture recognition using surface electromyography
    Sharif, Hajar
    Seo, Seung Byum
    Kesavadas, Thenkurussi K.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 682 - 685
  • [4] Hand Gesture Recognition Based on Surface Electromyography
    Samadani, Ali-Akbar
    Kulic, Dana
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4196 - 4199
  • [5] Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method
    Chen, Xiang
    Li, Yu
    Hu, Ruochen
    Zhang, Xu
    Chen, Xun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (04) : 1292 - 1304
  • [6] Online Hand Gesture Recognition Using Neural Network Based Segmentation
    Zhu, Chun
    Sheng, Weihua
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 2415 - 2420
  • [7] Data Augmentation of Surface Electromyography for Hand Gesture Recognition
    Tsinganos, Panagiotis
    Cornelis, Bruno
    Cornelis, Jan
    Jansen, Bart
    Skodras, Athanassios
    SENSORS, 2020, 20 (17) : 1 - 23
  • [8] Hand gesture recognition system using single-mixture source separation and flexible neural trees
    Guo, Yina
    Wang, Qinghua
    Huang, Shuhua
    Abraham, Ajith
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (09) : 1333 - 1342
  • [9] Hand Gesture Recognition Using Compact CNN via Surface Electromyography Signals
    Chen, Lin
    Fu, Jianting
    Wu, Yuheng
    Li, Haochen
    Zheng, Bin
    SENSORS, 2020, 20 (03)
  • [10] Design of a hand gesture recognition system based on forearm surface electromyography feedback
    Zhuang, Wei
    Zhan, Yi
    Han, Yue
    Su, Jian
    Gao, Chunming
    Yang, Dan
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2020, 13 (02) : 169 - 179