Edge list coloring;
Kernel-perfect orientation;
Line graph;
2-connected;
Chromatic index;
Odd cycles;
LINE-GRAPHS;
CHOOSABILITY;
D O I:
10.1016/j.disc.2017.11.012
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the class of simple graphs g* for which every pair of distinct odd cycles intersect in at most one edge. We give a structural characterization of the graphs in g* and prove that every G is an element of g* satisfies the list-edge-coloring conjecture. When Delta(G) >= 4, we in fact prove a stronger result about kernel-perfect orientations in L(G) which implies that G is (m Delta(G) : m)-edge-choosable and Delta(G)-edge-paintable for every m >= 1. (C) 2017 Elsevier B.V. All rights reserved.
机构:
USTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
Univ Blida 1, Route SOUMAA,BP 270, Blida, AlgeriaUSTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
Kerdjoudj, Samia
Pradeep, Kavita
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ, Dept Math, MIT Campus, Madras 600044, Tamil Nadu, IndiaUSTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
Pradeep, Kavita
Raspaud, Andre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, LaBRI, 351 Cours Liberat, F-33405 Talence, FranceUSTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria