A new version of (p, q)-Hermite-Hadamard's midpoint and trapezoidal inequalities via special operators in (p, q)-calculus

被引:0
|
作者
Sitthiwirattham, Thanin [1 ]
Ali, Muhammad Aamir [2 ]
Budak, Huseyin [3 ]
Etemad, Sina [4 ]
Rezapour, Shahram [4 ,5 ,6 ]
机构
[1] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkey
[4] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[5] Kyuing Hee Univ, Dept Math, 26 Kyungheedae-Ro, Seoul, South Korea
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
BOUNDARY VALUE PROBLEMS | 2022年 / 2022卷 / 01期
基金
中国国家自然科学基金;
关键词
q-calculus; (p; q)-Hermite-Hadamard inequality; q)-calculus; Convex functions; DIFFERENTIABLE MAPPINGS; INTEGRAL-INEQUALITIES; REAL NUMBERS; CONVEX;
D O I
10.1186/s13661-022-01665-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we conduct a research on a new version of the (p, q)-Hermite-Hadamard inequality for convex functions in the framework of postquantum calculus. Moreover, we derive several estimates for (p, q)-midpoint and (p, q)-trapezoidal inequalities for special (p, q)-differentiable functions by using the notions of left and right (p, q)-derivatives. Our newly obtained inequalities are extensions of some existing inequalities in other studies. Lastly, we consider some mathematical examples for some (p, q)-functions to confirm the correctness of newly established results.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus
    Sial, Ifra Bashir
    Ali, Muhammad Aamir
    Murtaza, Ghulam
    Ntouyas, Sotiris K.
    Soontharanon, Jarunee
    Sitthiwirattham, Thanin
    SYMMETRY-BASEL, 2021, 13 (10):
  • [2] (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions
    Kunt, Mehmet
    Iscan, Imdat
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 969 - 992
  • [3] On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    MATHEMATICS, 2021, 9 (07)
  • [4] Refinements of Hermite-Hadamard Inequalities for Continuous Convex Functions via (p,q)-Calculus
    Prabseang, Julalak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    MATHEMATICS, 2021, 9 (04) : 1 - 12
  • [5] On some new inequalities of Hermite-Hadamard-Mercer midpoint and trapezoidal type in q-calculus
    Ali, Muhammad Aamir
    Goodrich, Christopher S.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (01): : 35 - 46
  • [6] Some (p, q)-Integral Inequalities of Hermite-Hadamard Inequalities for (p, q)-Differentiable Convex Functions
    Luangboon, Waewta
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Budak, Huseyin
    MATHEMATICS, 2022, 10 (05)
  • [7] On some new Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in (p, q)-calculus with applications
    You, Xue-Xiao
    Ali, Muhammad Aamir
    Kalsoom, Humaira
    Soontharanon, Jarunee
    Sitthiwirattham, Thanin
    OPEN MATHEMATICS, 2022, 20 (01): : 707 - 723
  • [8] Some New Hermite-Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Budak, Huseyin
    Kalsoom, Humaira
    Agarwal, Praveen
    ENTROPY, 2021, 23 (07)
  • [9] (p, q)-Hermite-Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions
    Prabseang, Julalak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    AXIOMS, 2019, 8 (02)