High-temperature magnetization reversal in the inertial regime

被引:5
|
作者
Makhfudz, I. [1 ,2 ]
Hajati, Y. [3 ]
Olive, E. [1 ]
机构
[1] Univ Tours, INSA Ctr Val Loire, GREMAN, CNRS,UMR 7347, Parc Grandmont, F-37200 Tours, France
[2] Aix Marseille Univ, UMR 7334, CNRS, IM2NP, F-13013 Marseille, France
[3] Shahid Chamran Univ Ahvaz, Fac Sci, Dept Phys, Ahvaz 6135743135, Iran
关键词
MAGNETOCRYSTALLINE ANISOTROPY; DYNAMICS; IRON;
D O I
10.1103/PhysRevB.106.134415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by the remarkable experimental observation of all-optical femtosecond-scale magnetization reversal at relatively high temperatures, a stochastic inertial Landau-Lifshitz-Gilbert-Bloch (iLLGB) equation is written to describe nonequilibrium magnetization dynamics in ferromagnets at elevated temperatures and at short enough timescales that an inertial effect manifests. The effect of thermal agitations is described by a Fokker-Planck equation derived from the iLLGB equation including the longitudinal relaxation effect, which is solved with perturbation theory valid at elevated temperatures. Considering a uniaxially symmetric ferromagnet with uniaxial anisotropy, a thermal diffusion-driven exponential mode and alternating field-driven nutation mode of stable magnetization reversal are identified. Our theory proposes a magnetization reversal mechanism based entirely on transfer of angular momentum to the local magnetization, but which takes into account thermal fluctuations and inertial effect at the same time. The theory explains several key observations in all-optical magnetization reversal experiments; the absence of the need for a static field, the subpicosecond switching timescale, the relative roles of thermal and field effects, and the relevance of circularly polarized light. Our results have direct implications for magnetic recording devices operating close to room temperatures and in the ultrafast regime.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Magnetization reversal processes in layered high-temperature superconductors with ferromagnetic impurities
    Kashurnikov, V. A.
    Maksimova, A. N.
    Rudnev, I. A.
    PHYSICS OF THE SOLID STATE, 2014, 56 (05) : 894 - 911
  • [2] High-temperature hysteresis and magnetization reversal in nanocomposite FeCo plus MnO
    Araujo, L. R. S.
    Montenegro, F. C.
    Cornejo, D. R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (14) : E343 - E346
  • [3] Magnetization reversal processes in layered high-temperature superconductors with ferromagnetic impurities
    V. A. Kashurnikov
    A. N. Maksimova
    I. A. Rudnev
    Physics of the Solid State, 2014, 56 : 894 - 911
  • [4] Magnetization switching in the inertial regime
    Neeraj, Kumar
    Pancaldi, Matteo
    Scalera, Valentino
    Perna, Salvatore
    D'Aquino, Massimiliano
    Serpico, Claudio
    Bonetti, Stefano
    PHYSICAL REVIEW B, 2022, 105 (05)
  • [5] MAGNETIZATION OF HIGH-TEMPERATURE SUPERCONDUCTORS
    NAM, SB
    JOURNAL OF APPLIED PHYSICS, 1988, 63 (08) : 4212 - 4212
  • [6] High-temperature Magnetization Characteristics of Steels
    Takeuchi, Hirohisa
    Yogo, Yasuhiro
    Hattori, Tsuyoshi
    Tajima, Tomonori
    Ishikawa, Takashi
    ISIJ INTERNATIONAL, 2017, 57 (10) : 1883 - 1886
  • [7] HIGH-TEMPERATURE MAGNETIZATION DISTRIBUTION IN NICKEL
    BROWN, PJ
    DEPORTES, J
    ZIEBECK, KRA
    JOURNAL DE PHYSIQUE I, 1991, 1 (10): : 1529 - 1537
  • [8] HIGH-TEMPERATURE MAGNETIZATION DISTRIBUTION IN NICKEL
    BROWN, PJ
    DEPORTES, J
    NEUMANN, KU
    ZIEBECK, KRA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1992, 104 : 2083 - 2084
  • [9] INTERGRAIN MAGNETIZATION IN HIGH-TEMPERATURE SUPERCONDUCTORS
    VUONG, NV
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1995, 8 (11): : 783 - 790
  • [10] HIGH-TEMPERATURE MEMORY OF REMANENT MAGNETIZATION
    PETROV, IN
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1986, (07): : 91 - 100