A generalization of 0-sum flows in graphs

被引:5
|
作者
Akbari, S. [1 ,4 ]
Kano, M. [3 ]
Zare, S. [2 ,4 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Math Sci, Tehran, Iran
[3] Ibaraki Univ, Dept Comp & Informat Sci, Hitachi, Ibaraki, Japan
[4] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
0-sum flow; 1-Sum flow; S-Flow; Bipartite graph;
D O I
10.1016/j.laa.2013.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph and H be an abelian group. For every subset S subset of H a map phi: E(G) -> S is called an S-flow. For a given S-flow of G, and every v is an element of V (G), define s(v) = Sigma(uv is an element of E(G)) phi(uv). Let k is an element of H. We say that a graph G admits a k-sum S-flow if there is an S-flow such that for each vertex v, s(v) = k. We prove that if G is a connected bipartite graph with two parts X = {x(1),...,x(r)}, Y = {y(1),...,y(s)} and c(1),..., c(r), d(1),...d(s) are real numbers, then there is an R-flow such that s(x(i)) = c(1) and s(y(j)) = d(j), for 1 <= i <= r, 1 <= j <= s if and only if Sigma(r)(i=1) c(i) = Sigma(s)(j=1) d(j). Also, it is shown that if G is a connected non-bipartite graph and c(1),..., c(n) are arbitrary integers, then there is a Z-flow such that s(v(i)) = c(i), for i = 1,..., n if and only if the number of odd c(i) is even. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3629 / 3634
页数:6
相关论文
共 50 条
  • [1] 0-Sum and 1-Sum Flows in Regular Graphs
    Akbari, S.
    Kano, M.
    Zare, S.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [2] Convex-Concave 0-Sum Markov Stackelberg Games
    Goktas, Denizalp
    Prakash, Arjun
    Greenwald, Amy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] OPTIMAL BEHAVIORAL STRATEGIES IN 0-SUM GAMES WITH ALMOST PERFECT INFORMATION
    PONSSARD, JP
    SORIN, S
    MATHEMATICS OF OPERATIONS RESEARCH, 1982, 7 (01) : 14 - 31
  • [4] Constant Sum Group Flows of Graphs
    Wang, Tao-Ming
    MATHEMATICS, 2023, 11 (24)
  • [5] Constant Sum Flows in Regular Graphs
    Wang, Tao-Ming
    Hu, Shi-Wei
    FRONTIERS IN ALGORITHMICS AND ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, (FAW-AAIM 2011), 2011, 6681 : 168 - 175
  • [6] Zero-Sum Flows in Regular Graphs
    Akbari, S.
    Daemi, A.
    Hatami, O.
    Javanmard, A.
    Mehrabian, A.
    GRAPHS AND COMBINATORICS, 2010, 26 (05) : 603 - 615
  • [7] Zero-Sum Flows in Regular Graphs
    S. Akbari
    A. Daemi
    O. Hatami
    A. Javanmard
    A. Mehrabian
    Graphs and Combinatorics, 2010, 26 : 603 - 615
  • [8] ON 1-SUM FLOWS IN UNDIRECTED GRAPHS
    Akbari, Saieed
    Friedland, Shmuel
    Markstrom, Klas
    Zare, Sanaz
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 646 - 665
  • [9] On zero-sum 6-flows of graphs
    Akbari, S.
    Ghareghani, N.
    Khosrovshahi, G. B.
    Mahmoody, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) : 3047 - 3052
  • [10] A note on zero-sum 5-flows in regular graphs
    Akbari, S.
    Ghareghani, N.
    Khosrovshahi, G. B.
    Zare, S.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):