COMBINING PARAMETRIC AND NON-PARAMETRIC METHODS TO COMPUTE VALUE-AT-RISK

被引:0
|
作者
Alemany, Ramon [1 ]
Bolance, Catalina [1 ]
Guillen, Montserrat [1 ]
Padilla-Barreto, Alemar E. [1 ]
机构
[1] Univ Barcelona, Dept Econometr, Riskctr IREA, E-08007 Barcelona, Spain
关键词
quantile; nonparametric; loss models; extremes; risk evaluation; KERNEL DENSITY-ESTIMATION; TRANSFORMATION;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
We design a system for calculating the quantile of a random variable that allows us combining parametric and non parametric estimation methods. This approach is applicable to evaluate the severity of potential losses from existing data records; therefore, it is useful in many areas of economics and risk evaluation. The procedure is based on an initial parametric model assumption and then a nonparametric correction is introduced. In addition, a second correction is proposed so that the value at risk estimator is asymptotically optimal. Our procedure allows smoothing the tail behavior of the empirical distribution. Due to the lack of sample information for extreme values, smoothness in the tail cannot he achieved if classical nonparametric estimators are used. We apply this method to a real problem in the area of motor insurance.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [1] Parametric and non-parametric estimation of value-at-risk
    Jadhav, Deepak
    Ramanathan, T. V.
    JOURNAL OF RISK MODEL VALIDATION, 2009, 3 (01): : 51 - 71
  • [2] Uncertainty in value-at-risk estimates under parametric and non-parametric modeling
    Aussenegg W.
    Miazhynskaia T.
    Financial Markets and Portfolio Management, 2006, 20 (3): : 243 - 264
  • [3] Pillar Networks: Combining parametric with non-parametric methods for action recognition
    Qian, Yu
    Sengupta, Biswa
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 118 : 47 - 54
  • [4] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529
  • [5] Parametric and non-parametric methods for linear extraction
    Bascle, B
    Gao, X
    Ramesh, V
    STATISTICAL METHODS IN VIDEO PROCESSING, 2004, 3247 : 175 - 186
  • [6] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [7] Backtesting Parametric Value-at-Risk With Estimation Risk
    Escanciano, J. Carlos
    Olmo, Jose
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (01) : 36 - 51
  • [8] Non-parametric regression methods
    Ince H.
    Computational Management Science, 2006, 3 (2) : 161 - 174
  • [9] An Online Sequential Learning Non-parametric Value-at-Risk Model for High-Dimensional Time Series
    Heng-Guo Zhang
    Libo Wu
    Yan Song
    Chi-Wei Su
    Qingping Wang
    Fei Su
    Cognitive Computation, 2018, 10 : 187 - 200
  • [10] An Online Sequential Learning Non-parametric Value-at-Risk Model for High-Dimensional Time Series
    Zhang, Heng-Guo
    Wu, Libo
    Song, Yan
    Su, Chi-Wei
    Wang, Qingping
    Su, Fei
    COGNITIVE COMPUTATION, 2018, 10 (02) : 187 - 200