CRTgeeDR: an R Package for Doubly Robust Generalized Estimating Equations Estimations in Cluster Randomized Trials with Missing Data

被引:2
|
作者
Prague, Melanie [1 ,2 ]
Wang, Rui [1 ]
De Gruttola, Victor [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, 655 Huntington Ave, Boston, MA 02115 USA
[2] INRIA INSERM U1219 SISTM, 164 Rue Leo Saignat Room 23, F-33076 Bordeaux, France
来源
R JOURNAL | 2017年 / 9卷 / 02期
关键词
IMPROVING EFFICIENCY;
D O I
10.32614/RJ-2017-041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-parametric approaches based on generalized estimating equations (GEE) are widely used to analyze correlated outcomes in longitudinal settings. In this paper, we present a package CRTgeeDR developed for cluster randomized trials with missing data (CRTs). For use of inverse probability weighting to adjust for missing data in cluster randomized trials, we show that other software lead to biased estimation for non-independence working correlation structure. CRTgeeDR solves this problem. We also extend the ability of existing packages to allow augmented Doubly Robust GEE estimation (DR). Simulation studies demonstrate the consistency of estimators implemented in CRTgeeDR compared to packages such as geepack and the gains associated with the use of the DR for analyzing a binary outcome using a logistic regression. Finally, we illustrate the method on data from a sanitation CRT in developing countries.
引用
收藏
页码:105 / 115
页数:11
相关论文
共 50 条
  • [1] Multiply robust generalized estimating equations for cluster randomized trials with missing outcomes
    Rabideau, Dustin J.
    Li, Fan
    Wang, Rui
    STATISTICS IN MEDICINE, 2024, 43 (07) : 1458 - 1474
  • [2] Doubly robust generalized estimating equations for longitudinal data
    Seaman, Shaun
    Copas, Andrew
    STATISTICS IN MEDICINE, 2009, 28 (06) : 937 - 955
  • [3] Using generalized estimating equations and extensions in randomized trials with missing longitudinal patient reported outcome data
    Bell, Melanie L.
    Horton, Nicholas J.
    Dhillon, Haryana M.
    Bray, Victoria J.
    Vardy, Janette
    PSYCHO-ONCOLOGY, 2018, 27 (09) : 2125 - 2131
  • [4] The R Package geepack for Generalized Estimating Equations
    Halekoh, U
    Hojsgaard, S
    Yan, J
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (02): : 1 - 11
  • [5] Generalized Estimating Equations using the new R package glmtoolbox
    Vanegas, L. H.
    Rondon, L. M.
    Paula, G. A.
    R JOURNAL, 2023, 15 (02): : 105 - 133
  • [6] Doubly Robust and Multiple-Imputation-Based Generalized Estimating Equations
    Birhanu, Teshome
    Molenberghs, Geert
    Sotto, Cristina
    Kenward, Michael G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (02) : 202 - 225
  • [7] Power considerations for generalized estimating equations analyses of four-level cluster randomized trials
    Wang, Xueqi
    Turner, Elizabeth L.
    Preisser, John S.
    Li, Fan
    BIOMETRICAL JOURNAL, 2022, 64 (04) : 663 - 680
  • [8] Optimal designs using generalized estimating equations in cluster randomized crossover and stepped wedge trials
    Liu, Jingxia
    Li, Fan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (08) : 1299 - 1330
  • [9] Generalized empirical likelihood for nonsmooth estimating equations with missing data
    Cui, Li-E
    Zhao, Puying
    Tang, Niansheng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [10] R Package multgee: A Generalized Estimating Equations Solver for Multinomial Response
    Touloumis, Anestis
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (08): : 1 - 14