A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem

被引:4
|
作者
Aprile, Manuel [1 ]
Drescher, Matthew [2 ]
Fiorini, Samuel [2 ]
Huynh, Tony [3 ]
机构
[1] Univ Padua, Dipartimento Matemat, Padua, Italy
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
[3] Monash Univ, Sch Math, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Approximation algorithm; Cluster vertex deletion; Linear programming relaxation; Sherali-Adams hierarchy;
D O I
10.1007/978-3-030-73879-2_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give the first 2-approximation algorithm for the cluster vertex deletion problem. This is tight, since approximating the problem within any constant factor smaller than 2 is UGC-hard. Our algorithm combines the previous approaches, based on the local ratio technique and the management of true twins, with a novel construction of a "good" cost function on the vertices at distance at most 2 from any vertex of the input graph. As an additional contribution, we also study cluster vertex deletion from the polyhedral perspective, where we prove almost matching upper and lower bounds on how well linear programming relaxations can approximate the problem.
引用
收藏
页码:340 / 353
页数:14
相关论文
共 50 条
  • [1] A tight approximation algorithm for the cluster vertex deletion problem
    Aprile, Manuel
    Drescher, Matthew
    Fiorini, Samuel
    Huynh, Tony
    MATHEMATICAL PROGRAMMING, 2023, 197 (02) : 1069 - 1091
  • [2] A tight approximation algorithm for the cluster vertex deletion problem
    Manuel Aprile
    Matthew Drescher
    Samuel Fiorini
    Tony Huynh
    Mathematical Programming, 2023, 197 : 1069 - 1091
  • [3] Approximation and Tidying—A Problem Kernel for s-Plex Cluster Vertex Deletion
    René van Bevern
    Hannes Moser
    Rolf Niedermeier
    Algorithmica, 2012, 62 : 930 - 950
  • [4] An improved parameterized algorithm for the p-cluster vertex deletion problem
    Bang Ye Wu
    Li-Hsuan Chen
    Journal of Combinatorial Optimization, 2017, 33 : 373 - 388
  • [5] An improved parameterized algorithm for the p-cluster vertex deletion problem
    Wu, Bang Ye
    Chen, Li-Hsuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 373 - 388
  • [6] Approximation and Tidying-A Problem Kernel for s-Plex Cluster Vertex Deletion
    van Bevern, Rene
    Moser, Hannes
    Niedermeier, Rolf
    ALGORITHMICA, 2012, 62 (3-4) : 930 - 950
  • [7] A Fast Branching Algorithm for Cluster Vertex Deletion
    Anudhyan Boral
    Marek Cygan
    Tomasz Kociumaka
    Marcin Pilipczuk
    Theory of Computing Systems, 2016, 58 : 357 - 376
  • [9] A Fast Branching Algorithm for Cluster Vertex Deletion
    Boral, Anudhyan
    Cygan, Marek
    Kociumaka, Tomasz
    Pilipczuk, Marcin
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 357 - 376
  • [10] Faster Parameterized Algorithm for Cluster Vertex Deletion
    Dekel Tsur
    Theory of Computing Systems, 2021, 65 : 323 - 343